International Journal of Primatology

, Volume 31, Issue 3, pp 471–483 | Cite as

Use of Mineral Licks by White-Bellied Spider Monkeys (Ateles belzebuth) and Red Howler Monkeys (Alouatta seniculus) in Eastern Ecuador

  • John G. Blake
  • Jaime Guerra
  • Diego Mosquera
  • Rene Torres
  • Bette A. Loiselle
  • David Romo


Geophagy occurs in all primate groups and is particularly common in species that consume greater quantities of plant material, i.e., leaves, fruit. The function of geophagy is not fully understood and likely varies over space and time, perhaps in connection with changes in diet. Central to a better understanding of geophagy in primate ecology is knowledge of the occurrence of such behavior among different species and seasons. We used camera traps triggered by heat and motion to document the use of mineral licks by primates over a 3-yr period at a lowland forest site in eastern Ecuador (Tiputini Biodiversity Station). Such mineral licks can be important sources of minerals, nutrients, and other compounds for a wide range of species in Amazonian forests. Although 10 species of primates are known from the study site, we obtained photographs of only 2 species, Ateles belzebuth (white-bellied spider monkey) and Alouatta seniculus (red howler) at 2 of 4 saladeros surveyed. From late December 2004 through early January 2008, we recorded 192 photographs with a total of 318 Ateles belzebuth representing ≥66 separate visits. Comparable numbers for Alouatta seniculus were 80, 121, and 37. We recorded both species visiting a mineral lick at the same time on ≥7 occasions. Use of mineral licks varied across months; we recorded more visits from November through February, the drier period at Tiputini. Visits also varied by hour, with no visits before 0830 or after 1630; Ateles belzebuth showed a stronger mid-day peak in visits. Average visit length (calculated as the time between the first and last photographs of a given visit) was similar between the 2 species but median visit length was more than twice as long for Ateles belzebuth (15 min) as for Alouatta seniculus (6 min). Results indicate that mineral licks are important in the ecology of these species, but further studies are needed to determine the precise benefit(s) obtained and how benefits may vary with diet and other factors.


Alouatta Ateles camera trap Ecuador geophagy mineral lick 



We thank the many staff and volunteers who helped check the cameras, particularly Franklin Narvaez, Ramiro San Miguel, and Jose Macanilla. We especially thank Anthony Di Fiore for comments that greatly improved an earlier version of this manuscript and for sharing his knowledge about primates at Tiputini and elsewhere in Amazonia. Two anonymous reviewers also made many helpful suggestions. We also appreciate the help of Consuelo de Romo in facilitating our work at Tiputini and the many staff who help make working there such a pleasure. Support for this study was provided by National Geographic Society (7602-04), Universidad San Francisco de Quito, Tiputini Biodiversity Station, and University of Missouri—St. Louis. We thank Gary Kohout, Snapshot Sniper, LLC, for his help in maintaining the digital cameras.

Supplementary material

10764_2010_9407_Fig4_ESM.jpg (193 kb)
Slide 1

Ateles belzebuth at Harpia saladero. (JPEG 193 kb)

10764_2010_9407_Fig5_ESM.jpg (198 kb)
Slide 2

Alouatta seniculus at Harpia saladero. (JPEG 198 kb)

10764_2010_9407_Fig6_ESM.jpg (160 kb)
Slide 3

Ateles belzebuth and Alouatta seniculus at Harpia saladero. (JPEG 160 kb)


  1. Abrahams, P. W., & Parsons, J. A. (1996). Geophagy in the tropics: a literature review. Geographical Journal, 162, 63–72.CrossRefGoogle Scholar
  2. Analytical Software. (2003). Statistix 8. Tallahassee: Analytical Software.Google Scholar
  3. Atwood, T. C., & Weeks, H. P., Jr. (2002). Sex- and age-specific patterns of mineral lick use by white-tailed deer (Odocoileus virginianus). American Midland Naturalist, 148, 289–296.CrossRefGoogle Scholar
  4. Atwood, T. C., & Weeks, H. P., Jr. (2003). Sex-specific patterns of mineral lick preference in white-tailed deer. Northeastern Naturalist, 10, 409–414.Google Scholar
  5. Bicca-Marques, J. C., & Calegaro-Marques, C. (1994). A case of geophagy in the black howling monkey Alouatta caraya. Neotropical Primates, 2, 7–9.Google Scholar
  6. Brightsmith, D. J. (2004). Effects of weather on parrot geophagy in Tambopata, Peru. Wilson Bulletin, 116, 134–145.CrossRefGoogle Scholar
  7. Brightsmith, D., & Muñoz-Najar, R. (2004). Avian geophagy and soil characteristics in southeastern Peru. Biotropica, 36, 534–543.Google Scholar
  8. Britt, A., Randriamandratonirina, J. J., Glasscock, K. D., & Iambana, B. R. (2002). Diet and feeding behavior of Indri indri in a low-altitude rain forest. Folia Primatologica, 73, 225–239.CrossRefGoogle Scholar
  9. Burger, J., & Gochfeld, M. (2003). Parrot behavior at a Rio Manu (Peru) clay lick: temporal patterns, associations, and antipredator responses. Acta Ethologica, 6, 23–34.Google Scholar
  10. Campbell, C. J., Aureli, F., Chapman, C. A., Ramos-Fernández, G., Matthews, K., Russo, S. E., et al. (2005). Terrestrial behavior of Ateles spp. International Journal of Primatology, 26, 1039–1051.CrossRefGoogle Scholar
  11. Clayton, L., & Macdonald, D. W. (1999). Social organization of the babirusa (Babyrousa babyrussa) and their use of salt licks in Sulawesi, Indonesia. Journal of Mammalogy, 80, 1147–1157.CrossRefGoogle Scholar
  12. Davies, A. G., & Baillie, I. C. (1988). Soil-eating by red leaf monkeys (Presbytis rubicunda) in Sabah, northern Borneo. Biotropica, 20, 252–258.CrossRefGoogle Scholar
  13. de la Torre, S. (2000). Primates de la Amazonía del Ecuador/Primates of Amazonian Ecuador. Quito: SIMBIOE.Google Scholar
  14. De Souza, L. L., Ferrari, S. F., Da Costa, M. L., & Kern, D. C. (2002). Geophagy as a correlate of folivory in red-handed howler monkeys (Alouatta belzebul) from eastern Brazilian Amazonia. Journal of Chemical Ecology, 28, 1613–1621.CrossRefPubMedGoogle Scholar
  15. Defler, T. R. (2004). Primates of Colombia. Conservation International – tropical field guide series. Chicago: University of Chicago Press.Google Scholar
  16. Dew, J. L. (2005). Foraging, food choice, and food processing by sympatric ripe-fruit specialists: Lagothrix lagotricha poeppigii and Ateles belzebuth belzebuth. International Journal of Primatology, 26, 1107–1135.CrossRefGoogle Scholar
  17. Di Fiore, A. G. (2002). Predator sensitive foraging in ateline primates. In L. E. Miller (Ed.), Eat or be eaten: Predator sensitive foraging among primates (pp. 242–267). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  18. Di Fiore, A., & Suarez, S. A. (2007). Route-based travel and shared routes in sympatric spider and wooly monkeys: cognitive and evolutionary implications. Animal Cognition, 10, 317–329.CrossRefPubMedGoogle Scholar
  19. Diamond, J., Bishop, K. D., & Gilardi, J. D. (1999). Geophagy in New Guinea birds. Ibis, 141, 181–193.CrossRefGoogle Scholar
  20. Dominy, N. J., Davoust, E., & Minekus, M. (2004). Adaptive function of soil consumption: an in vitro study modeling the human stomach and small intestine. Journal Experimental Biology, 207, 319–324.CrossRefGoogle Scholar
  21. Emmons, L. H. (1997). Neotropical rainforest mammals. A field guide (2nd ed.). Chicago: University of Chicago Press.Google Scholar
  22. Emmons, L. H., & Stark, N. M. (1979). Elemental composition of a natural mineral lick in Amazonia. Biotropica, 11, 311–313.CrossRefGoogle Scholar
  23. Ferrari, S. F., Veiga, L. M., & Urbani, B. (2008). Geophagy in New World monkeys (Platyrrhini): ecological and geographic patterns. Folia Primatologica, 79, 402–415.CrossRefGoogle Scholar
  24. Gilardi, J. D., Duffey, S. S., Munn, C. A., & Tell, L. A. (1999). Biochemical functions of geophagy in parrots: detoxification of dietary toxins and cytoprotective effects. Journal Chemical Ecology, 25, 897–922.CrossRefGoogle Scholar
  25. Heyman, E. W., & Hartmann, G. (1991). Geophagy in moustached tamarins, Saguinus mystax (Platyrrhini: Callitrichidae), at the Río Bravo, Peruvian Amazonia. Primates, 32, 533–537.CrossRefGoogle Scholar
  26. Izawa, K. (1993). Soil-eating by Alouatta and Ateles. International Journal of Primatology, 14, 229–242.CrossRefGoogle Scholar
  27. Izawa, K., & Lozano, M. H. (1990). Frequency of soil-eating by a group of wild howler monkeys (Alouatta seniculus) in La Macarena, Colombia. Field Studies New World Monkeys, La Macarena Colombia, 4, 47–56.Google Scholar
  28. Karubian, J., Fabara, J., Yunes, D., Jorgenson, J. P., Romo, D., & Smith, T. B. (2005). Temporal and spatial patterns of macaw abundance in the Ecuadorian Amazon. Condor, 107, 617–626.CrossRefGoogle Scholar
  29. Ketch, L. A., Malloch, D., Mahaney, W. C., & Huffman, M. A. (2001). Comparative microbial analysis and clay mineralogy of soils eaten by chimpanzees (Pan troglodytes schweinfurthii) in Tanzania. Soil Biology & Biochemistry, 33, 199–203.CrossRefGoogle Scholar
  30. Kreulen, D. A. (1985). Lick use by large herbivores: a review of benefits and banes of soil consumption. Mammal Review, 15, 107–123.CrossRefGoogle Scholar
  31. Krishnamani, R., & Mahaney, W. C. (2000). Geophagy among primates: adaptive significance and ecological consequences. Animal Behaviour, 59, 899–915.CrossRefPubMedGoogle Scholar
  32. Lizcano, D. J., & Cavelier, J. (2000). Daily and seasonal activity of the mountain tapir (Tapirus pinchaque) in the Central Andes of Colombia. Journal of Zoology, 252, 429–435.CrossRefGoogle Scholar
  33. Lizcano, D. J., & Cavelier, J. (2004). Chemical characteristics of salt licks and feeding habits of mountain tapir (Tapirus pinchaque) in the Central Andes of Colombia. Maztozoologia Neotropical, 11, 193–201.Google Scholar
  34. Mahaney, W. C., Aufreiter, A., & Hancock, R. G. V. (1995). Mountain gorilla geophagy: a possible seasonal behavior for dealing with the effects of dietary changes. International Journal Primatology, 16, 475–488.CrossRefGoogle Scholar
  35. Mahaney, W. C., Milner, M. W., Sanmugadas, K., Hancock, R. G. V., Aufreiter, S., Wrangham, S., et al. (1997). Analysis of geophagy soils in Kibale Forest, Uganda. Primates, 38, 159–176.CrossRefGoogle Scholar
  36. Matsubayashi, H., Lagam, P., Majalap, N., Tangah, J., Sukon, J. R. A., & Kitayama, K. (2007). Importance of natural licks for the mammals in Bornean inland tropical rain forests. Ecological Research, 22, 742–748.CrossRefGoogle Scholar
  37. Matsuda, I., & Izawa, K. (2008). Predation of wild spider monkeys at La Macarena, Colombia. Primates, 49, 65–68.CrossRefPubMedGoogle Scholar
  38. Müller, K.-H., Ahl, C., & Hartmann, D. G. (1997). Geophagy in masked titi monkeys (Callicebus personatus melanochir) in Brazil. Primates, 38, 69–77.CrossRefGoogle Scholar
  39. Norconk, M. A., Wertis, C., & Kinzey, D. W. G. (1997). Seed predation by monkeys and macaws in eastern Venezuela: preliminary findings. Primates, 38, 177–184.CrossRefGoogle Scholar
  40. Norscia, I., Carrai, V., Ceccanti, B., & Borgognini Tarli, S. M. (2005). Termite soil eating in kirindy sifakas (Madagascar): proposing a new proximate factor. Folia Primatologica, 76, 119–122.CrossRefGoogle Scholar
  41. Pages, G., Lloyd, E., & Suarez, S. A. (2005). The impact of geophagy on ranging behavior in Phayre’s leaf monkeys (Trachypithecus phayrei). Folia Primatologica, 76, 342–346.CrossRefGoogle Scholar
  42. Robinson, J. G. (1984). Diurnal variation in foraging and diet in the wedge-capped capuchin Cebus olivaceus. Folia Primatologica, 43, 216–228.CrossRefGoogle Scholar
  43. Russo, S. E., Campbell, C. J., Dew, J. L., Stevenson, P. R., & Suarez, S. A. (2005). A multi-forest comparison of dietary preferences and seed dispersal by Ateles spp. International Journal Primatology, 26, 1017–1037.CrossRefGoogle Scholar
  44. Schmitz, C. A., Di Fiore, A., Link, A., Matthews, L. J., Montague, M. J., Derby, A. M., et al. (2007). Comparative ranging behavior of eight species of primates in a western Amazonian rainforest [Abstract]. American Journal Physical Anthropology (Supplement), 44, 208–209.Google Scholar
  45. Setz, E. Z. F., Enzweiler, J., Solferini, V. N., Amêndola, M. P., & Berton, R. S. (1999). Geophagy in the golden-faced saki monkey (Pithecia pithecia chrysocephala) in the Central Amazon. Journal of Zoology, London, 247, 91–103.CrossRefGoogle Scholar
  46. SPSS Inc. (2007). SPSS 16.0 for Windows. Chicago: SPSS Inc.Google Scholar
  47. Stevenson, P. R., Quiñones, M. J., & Ahumada, J. A. (2000). Influence of fruit availability on ecological overlap among four neotropical primates at Tinigua National Park, Colombia. Biotropica, 32, 533–544.Google Scholar
  48. Valencia, R., Foster, R. B., Villa, G., Condit, R., Svenning, J.-C., Hernandéz, C., et al. (2004). Tree species distributions and local habitat variation in the Amazon: large forest plot in eastern Ecuador. Journal of Ecology, 92, 214–229.CrossRefGoogle Scholar
  49. Veiga, L. M., & Ferrari, S. F. (2007). Geophagy at termitaria by bearded sakis (Chiropotes satanas) in southeastern Brazilian Amazonia. American Journal of Primatology, 69, 816–820.CrossRefPubMedGoogle Scholar
  50. Voigt, C. C., Dechmann, D. K. N., Bender, J., Rinehart, B. J., Michener, R. H., & Kunz, T. H. (2007). Mineral licks attract neotropical seed-dispersing bats. Research Letters Ecology 2007: article ID 34212, 4 pp. doi:1155/2007/34212.
  51. Voigt, C. C., Capps, K. A., Dechmann, D. K. N., Michener, R. H., & Kunz, T. H. (2008). Nutrition or detoxification: why bats visit mineral licks of the Amazonian rainforest. PLoS, 3(1–4), e2011.Google Scholar
  52. Voros, J., Mahaney, W. C., Milner, M. W., Krishnamani, R., Aufreiter, S., & Hancock, R. G. V. (2001). Geophagy by the bonnet macaques (Macaca radiata) of southern India: a preliminary analysis. Primates, 42, 327–344.CrossRefGoogle Scholar
  53. Wakibara, J. V., Huffman, M. A., Wink, M., Reich, S., Aufreiter, S., Hancock, R. G. V., et al. (2001). The adaptive significance of geophagy for Japanese macaques (Macaca fuscata) at Arashiyama, Japan. International Journal of Primatology, 22, 495–520.CrossRefGoogle Scholar
  54. Wallace, R. B. (2001). Diurnal activity budgets of black spider monkeys, Ateles chamek, in a southern Amazonian tropical forest. Neotropical Primates, 9, 101–107.Google Scholar
  55. Whitlock, M. C., & Schluter, D. (2009). The analysis of biological data. Greenwood Village: Roberts.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • John G. Blake
    • 1
  • Jaime Guerra
    • 2
  • Diego Mosquera
    • 2
  • Rene Torres
    • 2
  • Bette A. Loiselle
    • 1
  • David Romo
    • 2
  1. 1.Department of BiologyUniversity of Missouri—Saint LouisSaint LouisUSA
  2. 2.Estación Biodiversidad de TiputiniUniversidad San Francisco de QuitoQuitoEcuador

Personalised recommendations