Abstract
Setups that integrate both kinematics and morpho-functional investigations of a single sample constitute recent developments in the study of nonhuman primate bipedalisms. We introduce the integrated setup built at the Primatology Station of the French National Centre for Scientific Research (CNRS), which allows analysis of both bipedal and quadrupedal locomotion in a population of 55–60 captive olive baboons. As a first comparison, we present the hind limb kinematics of both locomotor modalities in 10 individuals, focusing on the stance phase. The main results are: 1) differences in bipedal and quadrupedal kinematics at the hip, knee, and foot levels; 2) a variety of foot contacts to the ground, mainly of semiplantigrade type, but also of plantigrade type; 3) equal variations between bipedal and quadrupedal foot angles; 4) the kinematics of the foot joints act in coordinated and stereotyped manners, but are triggered differently according to whether the support is bipedal or quadrupedal. Although very occasionally realized, the bipedal walk of olive baboon appears to be a habitual and nonerratic locomotor modality.






Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Aerts, P., Van Damme, R., Van Elsacker, L., & Duchene, V. (2000). Spatio-temporal gait characteristics of the hind-limb cycles during voluntary bipedal and quadrupedal walking in Bonobos (Pan paniscus). American Journal of Physical Anthropology, 111(4), 503–517.
Berillon, G., D’Août, K., Daver, G., Dubreuil, G., Multon, F., Nicolas, G., et al. (2010). In what manner do quadrupedal primates walk on two legs? Preliminary results on olive baboons (Papio anubis). In E. Vereecke & K. D’Août (Eds.), Developments in primatology: Progress and prospects: Primate locomotion: Linking in situ and ex situ research. New York: Springer.
Bojsen-Moller, F. (1979). Calcaneocuboid joint and stability of the longitudinal arch of the foot at high and low gear push off. Journal of Anatomy, 129(1), 165–176.
Coppens, Y., & Senut, B. (1991). Origine(s) de la bipédie chez les Hominidés. Paris: CNRS.
Crompton, R. H., & Günther, M. M. (2004). Humans and other bipeds: the evolution of bipedality. Journal of Anatomy, 204(5), 317–319.
Crompton, R. H., Li, Y., Alexander, R. M., Wang, W. J., & Günther, M. M. (1996). Segment inertial properties of primates: new techniques for laboratory and field studies of locomotion. American Journal of Physical Anthropology, 99(4), 547–570.
D’Août, K., Aerts, P., De Clercq, D., De Meester, K., & Van Elsacker, L. (2002). Segment and joint angles of hindlimb during bipedal and quadrupedal walking of the Bonobo (Pan paniscus). American Journal of Physical Anthropology, 119(1), 37–51.
D’Août, K., Aerts, P., De Clercq, D., Schoonaert, K., Vereecke, E., & Van Elsacker, L. (2001). Studying bonobo (Pan paniscus) locomotion using an integrated setup in a zoo environment: preliminary results. Primatologie, 4, 191–206.
D’Août, K., Vereecke, E., Schoonaert, K., De Clercq, D., Van Elsacker, L., & Aerts, P. (2004). Locomotion in bonobos (Pan paniscus): differences and similarities between bipedal and quadrupedal terrestrial walking, and a comparison with other locomotor modes. Journal of Anatomy, 204(5), 353–361.
DeSilva, J. M. (2010). Revisiting the ‘‘Midtarsal Break’’. American Journal of Physical Anthropology, 141(2), 245–258.
Elftman, H. (1944). The bipedal walking of the chimpanzee. Journal of Mammalogy, 25, 67–71.
Elftman, H., & Manter, J. (1935a). Chimpanzee and human feet in bipedal walking. American Journal of Physical Anthropology, 20(1), 69–79.
Elftman, H., & Manter, J. (1935b). The evolution of the human foot, with especial reference to the joints. Journal of Anatomy, 70, 56–70.
Fleagle, J. G. (1988). Primate adaptation and evolution. New York: Academic.
Franzen, J. L., Köhler, M., & Moyà-Solà, S. (2003). Walking upright. Courier Forschungsinstitut Senckenberg, 243, 153p.
Gebo, D. L. (1992). Plantigrady and foot adaptation in African Apes: implications for hominids origins. American Journal of Physical Anthropology, 89(1), 29–58.
Günther, M. M. (1989). Funktionsmorphologische Untersuchungen zum Sprungverhalten an mehrenen Halbaffenarten (Galago moholi, Galago (Otolemur) garnettii, Lemur catta). Ph.D. dissertation, University of Berlin.
Hirasaki, E., & Kumakura, H. (2003). Foot kinematics of Hylobates lar, Ateles geoffroyi, and Macaca fuscata during locomotion on arboreal and terrestrial substrates. American Journal of Physical Anthropology, S36, 114–115.
Hirasaki, E., Ogihara, N., Hamada, Y., Kumakura, H., & Nakatsukasa, M. (2004). Do highly trained monkeys walk like humans? A kinematic study of bipedal locomotion in bipedally trained Japanese macaques. Journal of Human Evolution, 46(6), 739–750.
Hunt, K. D. (1989). Positional behaviour in Pan troglodytes at the Mahale Mountains and Gombe Stream National Parks. Ph.D. dissertation, University of Michigan.
Ishida, H., Kimura, T., & Okada, M. (1974). Patterns of bipedal walking in anthropoid primates. In S. Kondo, M. Kawai, A. Ehara, & S. Kawamura (Eds.), Proceedings from the symposia of the 5th congress of the International Primatological Society (pp. 287–301). Tokyo: Japan Science Press.
Ishida, H., Tuttle, R., Pickford, M., Ogihara, N., & Nakatsukasa, M. (2006). Developments in primatology: progress and prospects: Human origins and environmental backgrounds. New York: Springer.
Jenkins, F. A. (1972). Chimpanzee bipedalism: cineradiographic analysis and implications for the evolution of gait. Science, 178(4063), 877–879.
Kimura, T. (1985). Bipedal and quadrupedal walking of primates: comparative dynamics. In S. Kondo (Ed.), Primate morphophysiology, locomotor analyses and human bipedalism (pp. 81–104). Tokyo: University of Tokyo Press.
Kimura, T. (1990). Voluntary bipedal walking in infant chimpanzees. In F. K. Jouffroy, M. H. Stack, & C. Niemitz (Eds.), Gravity, posture and locomotion in primates (pp. 237–251). Firenze: Il Sedicessimo.
Kimura, T., Okada, M., & Ishida, H. (1979). Kinesiological characteristics of primate walking: its significance in human walking. In M. E. Morbeck, H. Preuschoft, & N. Gomberg (Eds.), Environment, behavior, and morphology: Dynamic interactions in primates (pp. 297–311). New York: Gustav Fischer.
Kimura, T., Preuschoft, H., Rose, M. D. (1996). Development and Control in Primate Locomotion. Folia Primatologica, 66(1–4), 274p.
Lewis, O. J. (1989). Functional morphology of the evolving hand and foot. Oxford: Clarendon.
Li, Y., Crompton, R. H., Alexander, R. M., Gunther, M. M., & Wang, W. J. (1996). Characteristics of ground reaction forces in normal and chimpanzee-like bipedal walking by humans. Folia Primatologica, 66(1–4), 137–159.
Meldrum, D. J. (1991). Kinematics of the Cercopithecine foot on arboreal and terrestrial substrates with implications for the interpretation of Hominid terrestrial adaptations. American Journal of Physical Anthropology, 84, 273–289.
Meldrum, D. J., & Hilton, C. E. (2004). From biped to striders: The emergence of human walking, running and resource transport. New York: Kluwer Academic/Plenum.
Nakatsukasa, M., Hayama, S., & Preuschoft, H. (1995). Postcranial skeleton of a macaque trained for bipedal standing and walking and implications for functional adaptation. Folia Primatologica, 64, 1–29.
Nakatsukasa, M., Hirasaki, E., & Ogihara, N. (2006). Energy expenditure of bipedal walking is higher than that of quadrupedal walking in Japanese macaques. American Journal of Physical Anthropology, 131(1), 33–37.
Nakatsukasa, M., Ogihara, N., Hamada, Y., Goto, Y., Yamada, M., Hirakawa, T., et al. (2004). Energetic costs of bipedal and quadrupedal walking in Japanese macaques. American Journal of Physical Anthropology, 124(3), 248–256.
Nicolas, G., Multon, F., Berillon, G., & Marchal, F. (2007). From bone to plausible bipedal locomotion using inverse kinematics. Journal of Biomechanics, 40, 1048–1057.
Ogihara, N., Hirasaki, E., Kumakura, H., & Nakatsukasa, M. (2007). Ground–reaction–force profiles of bipedal walking in bipedally trained Japanese monkeys. Journal of Human Evolution, 53(3), 302–308.
Okada, M. (1985). Primate bipedal walking: comparative kinematics. In S. Kondo (Ed.), Primate morphophysiology, locomotor analyses and human bipedalism (pp. 47–58). Tokyo: Tokyo University Press.
Preuschoft, H. (1970). Functional anatomy of the lower extremity. In G. H. Bourne (Ed.), The chimpanzee. Vol. 3: Immunology, infections, hormones, anatomy and behavior (pp. 221–294). Basel: Karger.
Preuschoft, H. (1971). Body posture and mode of locomotion in early pleistocene hominids. Folia Primatologica, 14, 209–240.
Preuschoft, H. (1973). Functional anatomy of the upper extremity. In G. H. Bourne (Ed.), The chimpanzee, Vol. 6: Anatomy and pathology (pp. 34–120). Basel: Karger.
Rose, M. D. (1973). Quadrupedalism in primates. Primates, 14(4), 337–357.
Rose, M. D. (1976). Bipedal behavior of olive baboons (Papio anubis) and its relevance to an understanding of the evolution of human bipedalism. American Journal of Physical Anthropology, 44(2), 247–261.
Rose, M. D. (1977). Positional behavior of olive baboons (Papio anubis) and its relationship to maintenance and social activities. Primates, 18, 59–116.
Schmitt, D., & Larson, S. G. (1995). Heel contact as a function of substrate type and speed in Primates. American Journal of Physical Anthropology, 96(1), 39–50.
Senut, B., Pickford, M., Gommery, D., Mein, P., Cheboi, K., & Coppens, Y. (2001). First hominid from the Miocene (Lukeino Formation, Kenya). C R Acad Sci Paris, série IIa, 332(2), 137–144.
Shapiro, L. J., & Raichlen, D. A. (2005). Lateral sequence walking in infant Papio cynocephalus: implications for the evolution of diagonal sequence walking in primates. American Journal of Physical Anthropology, 126(2), 205–213.
Strasser, E., Fleagle, J., Rosenberger, A., & McHenry, H. (1998). Primate locomotion. Recent advances. New York: Plenum.
Susman, R. L., & Stern, J. T. (1991). Locomotor behavior of early hominids: Epistemology and fossil evidence. In Y. Coppens & B. Senut (Eds.), Origine(s) de la bipédie chez les hominidés (pp. 121–131). Paris: CNRS.
Tardieu, C., Aurengo, A., & Tardieu, B. (1993). New method of the three-dimensional analysis of bipedal locomotion for the study of displacements of the body and body-parts centers of mass in man and non-human primates: evolutionary framework. American Journal of Physical Anthropology, 90(4), 455–476.
Vereecke, E. E., & Aerts, P. (2008). The mechanics of the gibbon foot and its potential for elastic energy storage during bipedalism. Journal of Experimental Biology, 211, 3661–3670.
Vereecke, E. E., D’Août, K., De Clercq, D., Van Elsacker, L., & Aerts, P. (2003). Dynamic plantar pressure distribution during terrestrial locomotion of bonobos (Pan paniscus). American Journal of Physical Anthropology, 120(4), 373–383.
Vereecke, E. E., D’Août, K., & Aerts, P. (2006a). Locomotor versatility in the white–handed gibbon (Hylobates lar): a spatiotemporal analysis of the bipedal, tripedal, and quadrupedal gaits. Journal of Human Evolution, 50(5), 552–567.
Vereecke, E. E., D’Août, K., & Aerts, P. (2006b). Speed modulation in hylobatid bipedalism: a kinematic analysis. Journal of Human Evolution, 51(5), 513–526.
Vereecke, E. E., D’Août, K., De Clercq, D., Van Elsacker, L., & Aerts, P. (2004). The relationship between speed, contact time and peak plantar pressure in terrestrial walking of bonobos. Folia Primatologica, 75(4), 266–278.
Vereecke, E. E., D’Août, K., Van Elsacker, L., De Clercq, D., & Aerts, P. (2005). Functional analysis of the gibbon foot during terrestrial bipedal walking: plantar pressure distributions and three-dimensional ground reaction forces. American Journal of Physical Anthropology, 128(3), 659–669.
Ward, C. V. (2002). Interpreting the nature and locomotion of Australopithecus afarensis: where do we stand? Yearbook of Physical Anthropology, 45, 185–215.
White, T. D., Asfaw, B., Beyene, Y., Haile-Selassie, Y., Lovejoy, C. O., Suwa, G., et al. (2009). Ardipithecus ramidus and the Paleobiology of Early Hominids. Science, 326, 64–86.
Wrangham, R. W. (1980). Bipedal locomotion as a feeding adaptation in gelada baboons, and its complications for hominid evolution. Journal of Human Evolution, 9(4), 329–331.
Yamazaki, N., Ishida, H., Kimura, T., & Okada, M. (1979). Biomechanical analysis of the Primate bipedal walking by computer simulation. Journal of Human Evolution, 8(3), 337–349.
Acknowledgments
We thank the editors of this volume and organizers of the symposium on Functional Morphology in Primates in Durham for inviting us to introduce our ongoing program on baboon locomotion; this contribution is based on this introductory presentation. We also thank the other members of the Primatology Station, especially Valérie Moulin, for her permanent help. The entire motion capture system was set up with the collaboration of P. Trannois (Opto France, France); the Streamstation was configured with the help of T. Lemaire. This research is supported by the Fyssen Foundation (Research Grant), and the Groupement de Recherche GDR 2655 of the CNRS (Dir. L. Rosetta). Finally, we thank E. Hirasaki and 2 anonymous reviewers who provided numerous and very constructive comments on previous versions of the manuscript as well as Joanna M. Setchell, who contributed to the revision of the English and the editing of the final version of the manuscript.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Berillon, G., Daver, G., D’Août, K. et al. Bipedal versus Quadrupedal Hind Limb and Foot Kinematics in a Captive Sample of Papio anubis: Setup and Preliminary Results. Int J Primatol 31, 159–180 (2010). https://doi.org/10.1007/s10764-010-9398-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10764-010-9398-2
