Skip to main content
Log in

Food Preferences and Nutrient Composition in Captive White-handed Gibbons, Hylobates lar

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

Abstract

We aimed to assess spontaneous food preferences in captive white-handed gibbons and to analyze whether they correlate with nutrient composition. Via a 2-alternative choice test, we repeatedly presented 3 male Hylobates lar with all possible binary combinations of 10 types of food that are part of their diet in captivity and found the following rank order of preference: grape > banana = fig > apple > pear > honeydew melon > carrot > tomato > cucumber > avocado. Correlational analyses revealed a highly significant positive correlation between the food preference ranking and the total carbohydrate, fructose, and glucose contents of the foods (p < 0.01, respectively). With the exception of the trace mineral selenium (p < 0.05), there was no other significant correlation with any other macro- or micronutrient. In addition, the food preferences were stable across the day because rankings obtained from tests performed at 0900, 1200, and 1500 h, respectively, did not differ significantly (p > 0.05). Our results suggest that captive white-handed gibbons are not opportunistic, but selective feeders with regard to maximizing net gain of energy because only the content of carbohydrates, but not the contents of total energy, proteins, or lipids significantly correlate with the displayed food preferences. Further, the results suggest that captive Hylobates lar, in contrast to their free-ranging conspecifics, do not display marked changes in their food selection across the day.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banjo, A. D., Lawal, O. A., & Songonuga, E. A. (2006). The nutritional value of fourteen species of edible insects in southwestern Nigeria. African Journal of Biotechnology, 5, 298–301.

    CAS  Google Scholar 

  • Bartlett, T. Q. (2007). The hylobatidae: Small apes of Asia. In C. J. Campbell, A. Fuentes, K. C. MacKinnon, M. Panger, & S. K. Bearder (Eds.), Primates in perspective (pp. 274–289). New York: Oxford University Press.

    Google Scholar 

  • Barton, R. A., & Whiten, A. (1994). Reducing complex diets to simple rules: food selection by olive baboons. Behavioral Ecology and Sociobiology, 35, 283–293. doi:10.1007/BF00170709.

    Article  Google Scholar 

  • Bollard, E. G. (1970). The physiology and nutrition of developing fruits. In A. C. Hulme (Ed.), The biochemistry of fruits and their products, Vol. 1 (pp. 387–425). London: Academic Press, London.

    Google Scholar 

  • Breslin, P. A. S., Beauchamp, G. K., & Pugh, E. N. (1996). Monogeusia for fructose, glucose, sucrose and maltose. Perception & Psychophysics, 58, 327–341.

    CAS  Google Scholar 

  • Breslin, P. A. S., Kemp, S., & Beauchamp, G. K. (1994). Single sweetness signal. Nature, 369, 447–448. doi:10.1038/369447a0.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, C. R. (1940). A field study in Siam of the behavior and social relations of the gibbon (Hylobates lar). In R. M. Dorcus (Ed.), Comparative psychology monographs (pp. 84–206). Baltimore: The Johns Hopkins Press.

    Google Scholar 

  • Chivers, D. J. (1984). Feeding and ranging in gibbons: A summary. In H. Preuschoft, D. J. Chivers, W. Y. Brockelman, & N. Creel (Eds.), The lesser apes: Evolutionary and behavioural biology (pp. 267–281). Edinburgh: Edinburgh University Press.

    Google Scholar 

  • Conklin-Brittain, M. L., Wrangham, R., & Hunt, K. D. (1998). Dietary response of chimpanzees and cercopithecines to seasonal variation in fruit abundance: II. Macronutrients. International Journal of Primatology, 19, 971–998. doi:10.1023/A:1020370119096.

    Article  Google Scholar 

  • Food Standards Agency (2002). McCance and Widdowson’s The Composition of Foods (6th ed.). Cambridge: Royal Society of Chemistry.

    Google Scholar 

  • Fragaszy, D., Visalberghi, E., & Galloway, A. (1997). Infant tufted capuchin monkeys’ behaviour with novel foods: opportunism, not selectivity. Animal Behaviour, 53, 1337–1343. doi:10.1006/anbe.1996.0368.

    Article  PubMed  Google Scholar 

  • Freeland, W. J., & Janzen, D. H. (1974). Strategies in herbivory by mammals: the role of plant secondary compounds. American Naturalist, 108, 269–289. doi:10.1086/282907.

    Article  CAS  Google Scholar 

  • Glander, K. E. (1982). The impact of plant secondary compounds on primate feeding behavior. Yearbook of Physical Anthropology, 25, 1–18. doi:10.1002/ajpa.1330250503.

    Article  Google Scholar 

  • Harding, R. S. O. (1981). An order of omnivores: non-human primates in the wild. In R. S. O. Harding, & G. Teleki (Eds.), Omnivorous primates. Gathering and hunting in human evolution (pp. 191–214). New York: Columbia University Press.

    Google Scholar 

  • Hughes, R. N. (1993). Diet selection. An inter-disciplinary approach to foraging behaviour. London: Blackwell.

    Google Scholar 

  • Jolly, A. (1985). Food and feeding. In A. Jolly (Ed.), The evolution of primate behavior (pp. 45–71, 2nd ed.). New York: Macmillan.

    Google Scholar 

  • Laska, M. (1997). Taste preferences for five food-associated sugars in the squirrel monkey (Saimiri sciureus). Journal of Chemical Ecology, 23, 659–671. doi:10.1023/B:JOEC.0000006402.93081.4e.

    Article  CAS  Google Scholar 

  • Laska, M. (2001). A comparison of food preferences and nutrient composition in captive squirrel monkeys, Saimiri sciureus, and pigtail macaques, Macaca nemestrina. Physiology & Behavior, 73, 111–120. doi:10.1016/S0031-9384(01)00439-5.

    Article  CAS  Google Scholar 

  • Laska, M., Hermandez Salazar, L. T., & Rodriguez Luna, E. (2000). Food preferences and nutrient composition in captive spider monkeys, Ateles geoffroyi. International Journal of Primatology, 21, 671–683. doi:10.1023/A:1005517421510.

    Article  Google Scholar 

  • Laska, M., Luna Baltazar, J. M., & Rodriguez Luna, E. (2003). Food preferences and nutrient composition in captive pacas, Agouti paca (Rodentia, Dasyproctidae). Mammalian Biology, 68, 31–41. doi:10.1078/1616-5047-00059.

    Article  Google Scholar 

  • Leighton, M. (1993). Modeling dietary selectivity by bornean orangutans: evidence for integration of multiple criteria in fruit selection. International Journal of Primatology, 14, 257–311. doi:10.1007/BF02192635.

    Article  Google Scholar 

  • Mackinnon, J. R., & Mackinnon, K. S. (1980). Niche differentiation in a primate community. In D. J. Chivers (Ed.), Malayan forest primates (pp. 167–190). New York: Plenum Press.

    Google Scholar 

  • Menzel, E. W., & Draper, W. A. (1965). Primate selection of food by size: visible versus invisible rewards. Journal of Comparative and Physiological Psychology, 59, 231–239. doi:10.1037/h0021833.

    Article  PubMed  Google Scholar 

  • Milton, K. (1998). Physiological ecology of howlers (Alouatta): energetic and digestive considerations and comparison with the Colobinae. International Journal of Primatology, 19, 513–548. doi:10.1023/A:1020364523213.

    Article  Google Scholar 

  • Oftedal, O. T. (1991). The nutritional consequences of foraging in primates: the relationship of nutrient intakes to nutrient requirements. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 334, 161–170. doi:10.1098/rstb.1991.0105.

    Article  PubMed  CAS  Google Scholar 

  • Palombit, R. A. (1997). Inter- and intraspecific variation in the diets of sympatric siamang (Hylobates syndactylus) and lar gibbons (Hylobates lar). Folia Primatologica, 68, 321–337. doi:10.1159/000157260.

    Article  CAS  Google Scholar 

  • Payne, J. B. (1980). Competitors. In D. J. Chivers (Ed.), Malayan forest primates (pp. 261–277). New York: Plenum Press.

    Google Scholar 

  • Raemaekers, J. (1978). Changes through the day in the food choice of wild gibbons. Folia Primatologica, 30, 194–205. doi:10.1159/000155863.

    Article  CAS  Google Scholar 

  • Ramos-Elorduy, J., Moreno, J. M. P., Prado, E. E., Perez, M. A., Otero, J. L., & de Guevara, O. L. (1997). Nutritional value of edible insects from the state of Oaxaca, Mexico. Journal of Food Composition and Analysis, 10, 142–157. doi:10.1006/jfca.1997.0530.

    Article  CAS  Google Scholar 

  • Redford, K. H., Bouchardet Da Fonseca, G. A., & Lacher, T. E. (1984). The relationship between frugivory and insectivory in primates. Primates, 25, 433–440. doi:10.1007/BF02381666.

    Article  Google Scholar 

  • Remis, M. J. (2002). Food preferences among captive Western gorillas (Gorilla gorilla gorilla) and chimpanzees (Pan troglodytes). International Journal of Primatology, 23, 231–249. doi:10.1023/A:1013837426426.

    Article  Google Scholar 

  • Richard, A. F. (1985). Primate diets: patterns and principles. In A. F. Richard (Ed.), Primates in nature (pp. 163–205). New York: W. H. Freeman.

    Google Scholar 

  • Simmen, B., & Sabatier, D. (1996). Diets of some French Guianan primates: food composition and food choices. International Journal of Primatology, 17, 661–693. doi:10.1007/BF02735260.

    Article  Google Scholar 

  • Simmen, B., Hladik, A., Ramasiarisoa, P. L., Iaconelli, S., & Hladik, C. M. (1999). Taste discrimination in lemurs and other primates, and the relationships to distribution of the plant allelochemicals in different habitats of Madagascar. In H. Rakotosamimanana (Ed.), New directions in Lemur Studies (pp. 201–219). New York: Kluwer.

    Google Scholar 

  • Souci, S. W., Fachmann, W., & Kraut, H. (1989). Food composition and nutrition tables. Stuttgart: Wissenschaftliche Verlagsgesellschaft.

    Google Scholar 

  • Stephens, D. W., & Krebs, J. R. (1986). Foraging theory. Princeton: Princeton University Press.

    Google Scholar 

  • Stevenson, P. R. (2003). Fruit choice by woolly monkeys in Tinigua National Park, Colombia. International Journal of Primatology, 25, 367–381. doi:10.1023/B:IJOP.0000019157.35464.a0.

    Article  Google Scholar 

  • Thorington, R. W. (1970). Feeding behavior of nunhuman primates in the wild. In R. S. Harris (Ed.), Feeding and nutrition of nonhuman primates (pp. 15–27). New York: Academic Press.

    Google Scholar 

  • Ungar, P. S. (1995). Fruit preferences of four sympatric primate species at Ketambe, Northern Sumatra, Indonesia. International Journal of Primatology, 16, 221–245. doi:10.1007/BF02735479.

    Article  Google Scholar 

  • Ungar, P. S. (1996). Relationship of incisor size to diet and anterior tooth use in sympatric Sumatran anthropoids. American Journal of Primatology, 38, 145–156. doi:10.1002/(SICI)1098-2345(1996)38:2<145::AID-AJP3>3.0.CO;2-Z.

    Article  Google Scholar 

  • Visalberghi, E., Valente, M., & Fragaszy, D. (1998). Social context and consumption of unfamiliar foods by capuchin monkeys (Cebus apella) over repeated encounters. American Journal of Primatology, 45, 367–380. doi:10.1002/(SICI)1098-2345(1998)45:4<367::AID-AJP4>3.0.CO;2-U.

    Article  PubMed  CAS  Google Scholar 

  • Visalberghi, E., Sabbatini, G., Stammati, M., & Addessi, E. (2003). Preferences towards novel foods in Cebus apella: the role of nutrients and social influences. Physiology & Behavior, 80, 341–349. doi:10.1016/j.physbeh.2003.08.004.

    Article  CAS  Google Scholar 

  • Waterman, P. G. (1984). Food acquisition and processing as a function of plant leaf chemistry. In D. J. Chivers, B. A. Wood, & A. Bilsborough (Eds.), Food acquisition and processing in primates (pp. 177–211). New York: Plenum Press.

    Google Scholar 

  • Whitten, A. J. (1982). Diet and feeding behaviour of kloss gibbons on Siberut Island, Indonesia. Folia Primatologica, 37, 177–208. doi:10.1159/000156032.

    Article  CAS  Google Scholar 

  • Wrangham, R., Conklin-Brittain, N. L., & Hunt, K. D. (1998). Dietary response of chimpanzees and cercopithecines to seasonal variation in fruit abundance: I. Antifeedants. International Journal of Primatology, 19, 949–970. doi:10.1023/A:1020318102257.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Laska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jildmalm, R., Amundin, M. & Laska, M. Food Preferences and Nutrient Composition in Captive White-handed Gibbons, Hylobates lar . Int J Primatol 29, 1535–1547 (2008). https://doi.org/10.1007/s10764-008-9314-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10764-008-9314-1

Keywords

Navigation