International Journal of Primatology

, Volume 28, Issue 6, pp 1197–1217 | Cite as

Intratree Variation in Fruit Production and Implications for Primate Foraging

  • Alain HouleEmail author
  • Colin A. Chapman
  • William L. Vickery


We tested the hypothesis that fruit quantity and quality vary vertically within trees. We quantified intratree fruit production before exploitation by frugivores at different heights in 89 trees from 17 species fed on by primates in Kibale National Park, Uganda. We also conducted a pilot study to determine if the nutritional value of fruit varied within tree crowns. Depending on the species and crown size, we divided tree canopies into 2 or 3 vertical layers. In 2-layered trees, upper crowns produced fruits that were 9.6–30.1% bigger and 0.52–140 times the densities of those from lower crowns, with one exception. Among 2-layered trees, upper crowns produced a mean of 46.9 fruits/m3 (median 12.1), while lower crowns produced a mean of 14.1 fruits/m3 (median 2.5). Among 3-layered trees, upper crowns produced a mean density of 49.9 fruits/m3 (median 12.5), middle crowns a mean of 16.8 fruits/m3 (median 6.6), and lower crowns a mean of 12.8 fruits/m3 (median 1.8). Dry pulp and moisture were systematically greater per fruit in the highest compared to the lowest canopy layers (22.4% and 16.4% respectively in 2-layered trees, 49.7% and 21.8% respectively in 3-layered trees). In 1 tree of Diospyros abyssinica, a pilot nutritional study showed that upper crown ripe fruit contained 41.9% more sugar, 8.4% more crude proteins, and 1.8 times less of the potentially toxic saponin than lower crown ripe fruit, but the result needs to be verified with more individuals and species of trees. We discuss the consequences of intratree variations in fruit production with respect to competition among frugivorous primates.


contest competition crop size fruit density fruit production Kibale National Park, Uganda monopolization nutritional ecology scramble competition usurpation vertical stratification 



We thank the Uganda Wildlife Authority and the Makerere University Biological Field Station for allowing us to work in Kibale National Park. A doctoral grant from the Fonds FCAR (Canada), a postdoctoral fellowship from the Fonds NATEQ (Canada), Natural Sciences and Engineering Research Council of Canada, the Wildlife Conservation Society, National Science Foundation (grants SBR-9617664, SBR-990899), Louis Leakey Foundation, American Society of Primatologists, and the Groupe de Recherche en Écologie Forestière interuniversitaire of the Université du Québec à Montréal provided funding for the research. We thank Richard Wrangham for using the KCP facilities which were supported by NSF grant SBR-0416125. We thank Moses Musana, Solomon Musana, Denis Sebugwawo, and Prime Kabagambe for their assistance in the field; Thérèse Raymond and Guy Tremblay for their help in database management; and Amy Zanne and Richard Wrangham for their constructive comments on the research.


  1. Altmann, S. A. (1998). Foraging for survival: Yearling baboons in Africa. Chicago: Chicago University Press.Google Scholar
  2. Berg, C. C., & Hijman, M. E. E. (1989). Flora of tropical East Africa: Moraceae. Rotterdam: A. A. Balkema.Google Scholar
  3. Brady, C. J. (1987). Fruit ripening. Annual Review of Plant Physiology, 38, 155–178.CrossRefGoogle Scholar
  4. Brown, J. S. (1988). Patch use as an indicator of habitat preference, predation risk, and competition. Behavioral Ecology and Sociobiology, 22, 37–48.CrossRefGoogle Scholar
  5. Brown, J. S. (1992). Patch use under predation risk: I. Models and predictions. Annales Zoologici Fennici, 29, 301–309.Google Scholar
  6. Brown, J. S., Kotler, B. P., & Valone, T. J. (1994). Foraging under predation: A comparison of energetic and predation costs in rodent communities of the Negev and Sonoran deserts. Australian Journal of Zoology, 42, 435–448.CrossRefGoogle Scholar
  7. Brown, J. S., Morgan, R. A., & Dow, B. D. (1992). Patch use under predation risk: II. A test with fox squirrels, Sciurus niger. Annales Zoologici Fennici, 29, 311–318.Google Scholar
  8. Chapman, C. A., Balcomb, S. R., Gillespie, T. R., Skorupa, J. P., & Struhsaker, T. T. (2000). Long-term effects of logging on African primate communities: A 28-year comparison from Kibale National Park, Uganda. Conservation Biology, 14, 207–217.CrossRefGoogle Scholar
  9. Chapman, C. A., & Chapman, L. J. (2002). Foraging challenges of red colobus monkeys: Influence of nutrients and secondary compounds. Comparative Biochemistry and Physiology A, 133, 861–875.Google Scholar
  10. Chapman, C. A., Chapman, L. J., Rode, K. D., Hauck, E. M., & McDowell, L. R. (2003). Variation in the nutritional value of primate foods: Among trees, time periods, and areas. International Journal of Primatology, 24, 317–333.CrossRefGoogle Scholar
  11. Chapman, C. A., Chapman, L. J., Wrangham, R. W., Isabirye-Basuta, G., & Ben-David, K. (1997). Spatial and temporal variability in the structure of a tropical forest. African Journal of Ecology, 35, 287–302.CrossRefGoogle Scholar
  12. Chapman, C. A., & Lambert, J. E. (2000). Habitat alteration and the conservation of African primates: A case study of Kibale National Park, Uganda. American Journal of Primatology, 50, 169–186.PubMedCrossRefGoogle Scholar
  13. Chapman, C. A., Wrangham, R. W., Chapman, L. J., Kennard, D. K., & Zanne, A. E. (1999). Fruit and flower phenology at two sites in Kibale National Park, Uganda. Journal of Tropical Ecology, 15, 189–211.CrossRefGoogle Scholar
  14. Danish, L., Chapman, C. A., Hall, M. B., Rode, K. D., & Worman, C. O. (2006). The role of sugar in diet selection in redtail and red colobus monkeys. In G. Hohmann, M. Robbins, & C. Boesch (Eds.), Feeding ecology in apes and other primates (pp. 473–488). Cambridge, U.K.: Cambridge University Press.Google Scholar
  15. Dominy, N. J., Lucas, P. W., & Wright, S. J. (2003). Mechanics and chemistry of rain forest leaves: Canopy and understory compared. Journal of Experimental Botany, 54, 2007–2014.PubMedCrossRefGoogle Scholar
  16. Ellison, P. T. (2003). Energetics and reproductive effort. American Journal of Human Biology, 15, 342–351.PubMedCrossRefGoogle Scholar
  17. Furuichi, T., & Ihobe, H. (1994). Variation in male relationships in bonobos and chimpanzees. Behaviour, 130, 211–228.Google Scholar
  18. Gallaher, R. N., Weldon, C. O., & Futral, J. G. (1975). An aluminium block digester for plant and soil analysis. Soil Science Society of America Journal, 39, 803–806.CrossRefGoogle Scholar
  19. Goodall, J. (1986). The Chimpanzees of Gombe: Patterns of behavior. Cambridge: The Belknap Press of Harvard University Press.Google Scholar
  20. Horowitz, W. (1970). Official methods of analysis of the association of official analytical chemists (11th ed.). Washington, D.C.: AOAC.Google Scholar
  21. Houle, A. (2004). Mécanismes de coexistence chez les primates frugivores du Parc National de Kibale en Ouganda. Ph.D. thesis, Université du Québec à Montréal.Google Scholar
  22. Houle, A., Chapman, C. A., & Vickery, W. L. (2004). Tree climbing strategies for primate ecological studies. International Journal of Primatology, 25, 237–260.CrossRefGoogle Scholar
  23. Houle, A., Vickery, W. L., & Chapman, C. A. (2006). Testing mechanisms of coexistence among two species of frugivorous primates. Journal of Animal Ecology, 75, 1034–1044.PubMedCrossRefGoogle Scholar
  24. Ihobe, H. (1992). Male-male relationships among wild bonobos (Pan paniscus) at Wamba, Republic of Zaire. Primates, 33, 163–179.CrossRefGoogle Scholar
  25. Isbell, L. A., & Young, T. P. (2002). Ecological models of female social relationships in primates: Similarities, disparities, and some directions for future clarity. Behaviour, 139, 177–202.CrossRefGoogle Scholar
  26. Kahlenberg, S. M. (2006). Female-Female competition and male sexual coercion in Kanyawara chimpanzees. Ph.D. thesis, Harvard University.Google Scholar
  27. Knott, C. D. (1998). Changes in orangutan caloric intake, energy balance, and ketones in response to fluctuating fruit availability. International Journal of Primatology, 19, 1061–1079.CrossRefGoogle Scholar
  28. Kotler, B. P., Brown, J. S., & Hasson, O. (1991). Factors affecting gerbil foraging behavior and rates of owl predation. Ecology, 72, 2249–2260.CrossRefGoogle Scholar
  29. Kotler, B. P., Brown, J. S., & Mitchell, W. A. (1993). Environmental factors affecting patch use in two species of gerbilline rodents. Journal of Mammalogy, 74, 614–620.CrossRefGoogle Scholar
  30. Laman, T. G. (1995). Safety recommendations for climbing rain forest trees with “single rope technique”. Biotropica, 27, 406–409.CrossRefGoogle Scholar
  31. Lynch, J., & Gonzalez, A. (1993). Canopy nutrient allocation in relation to incident light in the tropical fruit tree Borojoa patinoi (Cuatr.). Journal of American Society of Horticultural Science, 118, 777–785.Google Scholar
  32. Mehrotra, P., Mehrotra, P., & Rawat, Y. S. (1998). Canopy effect on the dry matter allocation in different components of evergreen and non-evergreen forb species of Kumaun Himalaya. Current Science of Bangalore, 75, 1399–1402.Google Scholar
  33. Olsson, O., Brown, J. S., & Smith, H. G. (2002). Long- and short-term state-dependent foraging under predation risk: An indication of habitat quality. Animal Behaviour, 63, 981–989.CrossRefGoogle Scholar
  34. Olupot, W., Chapman, C. A., Waser, P. M., & Isabirye Basuta, G. (1997). Mangabey (Cercocebus albigena) ranging patterns in relation to fruit availability and the risk of parasite infection in Kibale National Park, Uganda. American Journal of Primatology, 43, 65–78.PubMedCrossRefGoogle Scholar
  35. Peres, C. A. (1994). Primate responses to phenological changes in an Amazonian Terra Firme forest. Biotropica, 26, 98–112.CrossRefGoogle Scholar
  36. Peres, C. A. (1996). Food patch structure and plant resource partitioning in interspecific associations of Amazonian tamarins. International Journal of Primatology, 17, 695–723.CrossRefGoogle Scholar
  37. Perica, S. (2001). Seasonal fluctuation and intracanopy variation in leaf nitrogen level in olive. Journal of Plant Nutrition, 24, 779–787.CrossRefGoogle Scholar
  38. Perry, D. R. (1978). A method of access into the crowns of emergent and canopy trees. Biotropica, 10, 155–157.CrossRefGoogle Scholar
  39. Phillips-Conroy, J. E. (1986). Baboons, diet and disease: Food plant selection and schistosomiasis. In D. M. Taub & F. A. King (Eds.), Current perspectives in primate social dynamics (pp. 287–304). New York: Van Nostrand Reinhold.Google Scholar
  40. Pollock, J. I. (1977). The ecology and sociology of feeding in Indri indri. In T. H. Clutton-Brock (Ed.), Primate ecology: Studies of feeding and ranging behaviour in lemurs, monkeys and apes (pp. 37–69). Academic Press, London.Google Scholar
  41. Proietti, P., Palliotti, A., Famiani, F., Antognozzi, E., Ferranti, F., Andreutti, R., et al. (2000). Influence of leaf position, fruit and light availability on photosynthesis of two chestnut genotypes. Scientia Horticulturae, 85, 63–73.CrossRefGoogle Scholar
  42. Pusey, A., Williams, J., & Goodall, J. (1997). The influence of dominance rank on the reproductive success of female chimpanzees. Science, 277, 828–831.PubMedCrossRefGoogle Scholar
  43. Raven, P. H., Evert, R. F., & Eichhorn, S. E. (1992). Biology of plants (5th ed.). New York: Worth Publishers.Google Scholar
  44. Remis, M. J. (1997). Ranging and grouping patterns of a western lowland gorilla group at Bai Hokou, Central African Republic. American Journal of Primatology, 43, 111–133.PubMedCrossRefGoogle Scholar
  45. Saj, T. L., Marteinson, S., Sicotte, P., & Chapman, C. A. (2007). Controversy over the application of current socioecological theory to folivorous primates: Colobus vellerosus fits the predictions. American Journal of Physical Anthropology, 133, 994–1003.PubMedCrossRefGoogle Scholar
  46. Schaefer, H. M., Schmidt, V., & Wesenberg, J. (2002). Vertical stratification and caloric content of the standing fruit crop in a tropical lowland forest. Biotropica, 34, 244–253.Google Scholar
  47. Sellin, A., & Kupper, P. (2005). Variation in leaf conductance of silver birch: Effects of irradiance, vapour pressure deficit, leaf water status and position within a crown. Forest Ecology and Management, 206, 153–166.CrossRefGoogle Scholar
  48. Snaith, T., & Chapman, C. A. (2005). Towards an ecological solution to the folivore paradox: patch depletion as an indicator of within-group scramble competition in red colobus monkeys (Piliocolobus tephrosceles). Behavioral Ecology and Sociobiology, 59, 185–190.CrossRefGoogle Scholar
  49. Sokal, R. R., & Rohlf, F. J. (1995). Biometry (3rd ed.). New York: Freeman.Google Scholar
  50. SPSS, Inc. (1998). SPSS Base 8.0 Application Guide. Chicago: SPSS Inc.Google Scholar
  51. Sterck, E. H. M., & Steenbeek, R. (1997). Female dominance relationships and food competition in the sympatric Thomas langur and long-tailed macaque. Behaviour, 134, 749–774.Google Scholar
  52. Sterck, E. H. M., Watts, D. P., & van Schaik, C. P. (1997). The evolution of female social relationships in nonhuman primates. Behavioral Ecology and Sociobiology, 41, 291–309.CrossRefGoogle Scholar
  53. Stevens, J. M. G., Vervaecke, H., de Vries, H., & van Elsacker, L. (2005). Peering is not a formal indicator of subordination in bonobos (Pan paniscus). American Journal of Primatology, 65, 255–267.PubMedCrossRefGoogle Scholar
  54. Strier, K. B., Dib, L. T., & Figueira, J. E. C. (2002). Social dynamics of male muriquis (Brachyteles arachnoides hypoxanthus). Behaviour, 139, 315–342.CrossRefGoogle Scholar
  55. Strier, K. B., Ziegler, T. E., & Wittwer, D. J. (1999). Seasonal and social correlates of fecal testosterone and cortisol levels in wild male muriquis (Brachyteles arachnoides). Hormones and Behavior, 35, 125–134.PubMedCrossRefGoogle Scholar
  56. Struhsaker, T. T. (1975). The red colobus monkey. Chicago: University of Chicago Press.Google Scholar
  57. Struhsaker, T. T. (1997). Ecology of an African Forest: Logging in Kibale and the conflict between conservation and exploitation. Gainesville: University Press of Florida.Google Scholar
  58. Taiz, L., & Zeiger, E. (1998). Plant physiology (2nd ed.). Sunderland, MA: Sinauer Associates.Google Scholar
  59. van Schaik, C. P. (1989). The ecology of social relationships amongst female primates. In V. Standen & R. A. Foley (Eds.), Comparative socioecology (pp. 195–218). Oxford: Blackwell Scientific.Google Scholar
  60. Vogel, E. R. (2005). Rank differences in energy intake rates in white-faced capuchin monkeys, Cebus capucinus: The effects of contest competition. Behavioral Ecology and Sociobiology, 58, 333–344.CrossRefGoogle Scholar
  61. Whitten, P. L. (1983). Diet and dominance among female vervet monkeys (Cercopithecus aethiops). American Journal of Primatology, 5, 139–159.CrossRefGoogle Scholar
  62. Wittig, R. M., & Boesch, C. (2003). Food competition and liner dominance hierarchy among female chimpanzees of the Taï National Park. International Journal of Primatology, 24, 847–867.CrossRefGoogle Scholar
  63. Wrangham, R. W. (1980). An ecological model of female-bonded primate groups. Behaviour, 75, 262–300.Google Scholar
  64. Wrangham, R. W., Conklin-Brittain, N. L., & Hunt, K. D. (1998). Dietary response of chimpanzees and cercopithecines to seasonal variation in fruit abundance. I. Antifeedants. International Journal of Primatology, 19, 949–970.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Alain Houle
    • 1
    • 4
    Email author
  • Colin A. Chapman
    • 2
    • 3
  • William L. Vickery
    • 1
  1. 1.Groupe de Recherche en Écologie Forestière interuniversitaire, Département des Sciences BiologiquesUniversité du Québec à MontréalMontréalCanada
  2. 2.Department of Anthropology & McGill School of EnvironmentMcGill UniversityMontréalCanada
  3. 3.Wildlife Conservation SocietyBronxUSA
  4. 4.Peabody Museum, Department of AnthropologyHarvard UniversityCambridgeUSA

Personalised recommendations