Skip to main content

Advertisement

Log in

Acoustic Niches of Siberut Primates

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

Abstract

The loud calls nonhuman primates use in long-distance communication have supposedly been selected for efficient information transfer in the habitat. The differential effects of scattering and reverberation and the masking effects of background noise predict that loud calls produced in rain forest habitats should be low-pitched and whistle-like with low-frequency modulation. Callers may also use particular calling posts or times of day with reduced background noise to increase the efficacy of sound transmission. We studied the loud calls of the 4 sympatric primate species on Siberut Island. Only Kloss gibbons (Hylobates klossii) fulfilled the predictions regarding both the structure and use of calls. Though the other 3 species —Mentawai macaques (Macaca siberu), pig-tailed langurs (Simias concolor), and Mentawai leaf monkeys (Presbytis potenziani)— also concentrated their main energies in the spectral window with the lowest background noise, their calls were not adapted to long-range transmission. All 4 species produced loud calls exclusively no lower than 18 m above ground, but food abundance and shelter in the canopy may also be factors. Though all 4 species produced the majority of loud calls in the morning, it was not the only time of day with reduced background noise. We suggest that phylogenetic inheritance may better explain the structure of calls than adaptation to the habitat. In sum, the observed usage of spectral and temporal niches is not solely an adaptation to the sound profile of the habitat, though it clearly improves their transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altman, J. (1986). Observational study of behaviour: Sampling methods. Behaviour, 49, 227–267.

    Article  Google Scholar 

  • Bradbury, J. W., & Vehrencamp, S. L. (1998). Principles of Acoustic Communication. Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Brenowitz, E. A. (1986). Environmental influences on acoustic and electric animal communication. Brain and Behavioral Evolution, 28, 32–42.

    Article  CAS  Google Scholar 

  • Brown, C. H., & Gomez, R. (1992). Functional design features in primate vocal signals: The acoustic habitat and sound distortion. In T. Nishida, W. C. McGrew, & P. Marler (Eds.) Topics of Primatology (pp. 177–198). Tokyo: Tokyo University Press.

    Google Scholar 

  • Brown, C. H., Gomez, R., & Waser, P. M. (1995). Old World monkey vocalisations: adaptations to the local habitat? Animal Behaviour, 50, 945–961.

    Article  Google Scholar 

  • Brown, C. H., & Waser, P. M. (1988). Environmental influences on the structure of primate vocalizations. In D. Todt, P. Goedeking, & D. Symmes (Eds.) Primate vocal communication (pp. 51–68). Berlin: Springer.

    Google Scholar 

  • Cheney, D., Seyfarth, R., & Palombit, R. (1996). The function and mechanisms underlying baboon ‘contact’ barks. Animal Behaviour, 52, 507–518.

    Article  Google Scholar 

  • Ey, E., Hammerschmidt, K., Seyfarth, R. M., & Fischer, J. (2007a). Age-and sex-related variations in clear calls of Chacma baboons (Papio hamadryas ursinus). International Journal of Primatology, 28, 947–960.

    Article  Google Scholar 

  • Ey, E., Pfefferle, D., & Fischer, J. (2007b). Do age-and sex-related variations reliably reflect body size in non-human primate vocalizations? A review. Primates, 48, 253–267.

    Article  PubMed  CAS  Google Scholar 

  • Forrest, T. G. (1994). From sender to receiver: Propagation and environmental effects on acoustic signals. American Zoologist, 34, 644–654.

    Google Scholar 

  • Henwood, K., & Fabrick, A. (1979). A quantitative analysis of the dawn chorus: Temporal selection for community optimization. American Naturalist, 114, 260–274.

    Article  Google Scholar 

  • Holland, J., Dabelsteen, T., Pedersen, S. B., & Larsen, O. N. (1998). Degradation of wren Troglodytes troglodytes song: Implications for information transfer and ranging. Journal of the Acoustical Society of America, 103, 2154–2166.

    Article  Google Scholar 

  • Marten, K., & Marler, P. (1977). Sound transmission and its significance for animal vocalization I. Temperate habitats. Behavioral Ecology and Sociobiology, 2, 271–290.

    Article  Google Scholar 

  • Marten, K., Quine, D., & Marler, P. (1977). Sound transmission and its significance for animal vocalization II. Tropical forest habitats. Behavioral Ecology and Sociobiology, 2, 291–302.

    Article  Google Scholar 

  • Martens, M. J. M., & Michelsen, A. (1981). Absorption of acoustic energy by plant leaves. Journal of the Acoustical Society of America, 69, 303–306.

    Article  Google Scholar 

  • Morton, E. S. (1975). Ecological sources of selection on avian sounds. American Naturalist, 109, 17–34.

    Article  Google Scholar 

  • Naguib, M. (1997). Use of song amplitude for ranging in Carolina wrens, Thryothorus ludovicianus. Ethology, 103, 723–731.

    Article  Google Scholar 

  • Naguib, M. (2003). Reverberation of rapid and slow trills: Implications for signal adaptations to long-range communication. Journal of the Acoustical Society of America, 113, 1749–1756.

    Article  PubMed  Google Scholar 

  • Naguib, M., & Wiley, R. H. (2001). Estimating the distance to a source of sound: mechanisms and adaptations for long-range communication. Animal Behaviour, 62, 825–837.

    Article  Google Scholar 

  • Nemeth, E., Pederson, S. B., & Winkler, H. (2006). Rainforests as concert halls for birds: Are reverberations improving sound transmission of long song elements? Journal of the Acoustial Society of America, 119, 620–626.

    Article  Google Scholar 

  • Nemeth, E., Winkler, H., & Dabelsteen, T. (2001). Differential degradation of antbird songs in a Neotropical rainforest: Adaptation to perch height? Journal of the Acoustical Society of America, 110, 3263–3274.

    Article  PubMed  CAS  Google Scholar 

  • Padgham, M. (2004). Reverberation and frequency attenuation in forests—implications for acoustic communication in animals. Journal of the Acoustical Society of America, 115, 402–410.

    Article  PubMed  Google Scholar 

  • Price, M. A., Attenborough, K., & Heap, N. W. (1988). Sound attenuation through trees: Measurements and models. Journal of Acoustical Society of America, 84, 1836–1844.

    Article  Google Scholar 

  • Ryan, M. J., & Kime, N. M. (2003). Selection on long-distance acoustic signals. In A. M. Simmons, A. N. Popper, & R. R. Fay (Eds.) Acoustic Communication (pp. 225–273). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Steenbeek, R., Assink, P. R., & Wich, S. A. (1999). Tenure related changes in wild Thomas’s langurs II: Long-distance calls. Behaviour, 136, 627–650.

    Article  Google Scholar 

  • Tenaza, R. R. (1989). Intergroup calls of male pig-tailed langurs (Simias concolor). Primates, 30, 199–206.

    Article  Google Scholar 

  • Waltert, M., Abegg, C., Ziegler, T., Hadi, H., Priata, D., & Hodges, K. (in press). Abundance and community structure of Mentawai primates in the Peleonan forest, North Siberut. Oryx.

  • Waser, P. M. (1977). Individual recognition, intragroup cohesion and intergroup spacing: evidence from sound playback to forest monkeys. Behaviour, 60, 28–74.

    Article  Google Scholar 

  • Waser, P. M., & Brown, C. H. (1984). Is there a ‘sound window’ for primate communication? Behavioral Ecology and Sociobiology, 15, 73–76.

    Article  Google Scholar 

  • Waser, P. M., & Brown, C. H. (1986). Habitat acoustics and primate communication. American Journal of Primatology, 10, 135–154.

    Article  Google Scholar 

  • Waser, P. M., & Waser, M. S. (1977). Experimental studies of primate vocalisation: specializations for long-distance propagation. Tierphysiologie, 43, 239–263.

    Google Scholar 

  • Wich, S. A., Assink, P. R., Becher, F., & Sterck, E. H. (2002). Playbacks of long-distance calls to wild Thomas langurs (Primates; Presbytis thomasi): The effect of location. Behaviour, 139, 65–78.

    Article  Google Scholar 

  • Wich, S. A., & Nunn, C. L. (2002). Do male “long-distance calls” function in mate defense? A comparative study of long-distance calls in primates. Behavioral Ecology and Sociobiology, 52, 474–484.

    Article  Google Scholar 

  • Wiley, R. H., & Richards, D. G. (1978). Physical constraints on acoustic communication in atmosphere—implications for evolution of animal vocalizations. Behavioral Ecology and Sociobiology, 3, 69–94.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Critical Ecosystem Partnership Fund (CEPF) for financial support; the Siberut Conservation Program (SCP); and Muhammad Agil, Department of International Affairs, for logistical support, and Christophe Abegg and Thomas Ziegler for valuable assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Hammerschmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, C., Hodges, K., Fischer, J. et al. Acoustic Niches of Siberut Primates. Int J Primatol 29, 601–613 (2008). https://doi.org/10.1007/s10764-007-9181-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10764-007-9181-1

Keywords

Navigation