Skip to main content
Log in

Mathematics and the Lifeway of Mesopithecus

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

Abstract

Based on a critical statistical reanalysis of biometrical raw data from calcaneal morphology recently published by Youlatos (2003), I infer that the most similar extant Cercopithecidae to Mesopithecus pentelicus from the Late Miocene of Pikermi, Greece are arboreal, suggesting that M. pentelicus is also best regarded as arboreal rather than semiterrestrial or terrestrial. I used 2 different approaches: 1. Fisher’s overall and Holm’s multiple-hypothesis tests and 2. bootstrapped cluster analysis of a Mahalanobis generalized distance matrix. From a strictly methodological point of view, the results emphasize a well-known but frequently ignored problem: biometrical descriptors are usually intercorrelated variables, a characteristic that can strongly bias the results of quantitative comparisons between individuals or species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barthélémy, J.-P., and Guénoche, A. (1991). Trees and Proximities representations. Wiley, Chichester.

    Google Scholar 

  • Benzecri, J. P. (1973). L’Analyse des Données. 2, l’Analyse des Correspondances. Dunod, Paris.

    Google Scholar 

  • Berry, V., and Gascuel, O. (1996). On the interpretation of bootstrap trees: appropriate threshold of clade selection and induced gain. Molecular Biolology and Evolution 13: 999–1011.

    Google Scholar 

  • Berry, V., and Gascuel, O. (1997). Inferring evolutionary trees with strong combinatorial confidence. In Jiang, T. (ed.), Proceedings of the 3rd Annual International Computing and Combinatorics Conference, LNCS, Springer Verlag, pp. 111–123.

  • Berry, V., Gascuel, O., and Caraux, G. (2000). Choosing the tree which actually best explains the data: Another look at the bootstrap in phylogenetic reconstruction. Computational Statistics & Data Analysis 38: 273–283.

    Google Scholar 

  • Blanken, R. L., Klotz, L. C., and Hinnebush, A. G. (1982). Computer comparison of new and existing criteria for constructing evolutionary trees from sequence data. Journal of Molecular Evolution 19: 9–19.

    PubMed  Google Scholar 

  • Buneman, P. (1974). A note on metric properties of trees. Journal of Combinatorial Theory 17: B, 48–50.

    Article  Google Scholar 

  • Cavalli-Sforza, L. L., and Edwards, A. W. F. (1967). Phylogenetic analysis: models and estimation procedures. Evolution 32: 550–570.

    Google Scholar 

  • Efron, B. (1979). Bootstrap methods: Another look at the jackknife. The Annals of Statistics, 7, 1–26.

    Google Scholar 

  • Efron, B. (1982). The Jackknife, the Bootstrap and other Resampling plans. CBMS Monograph, 38, Society for Industrial and Applied Mathematics, Philadelphia.

    Google Scholar 

  • Efron, B., Halloran, E., and Holmes, S. (1996). Bootstrap confidence levels for phylogenetic trees. Proceedings of the National Academy of Science USA. 93: 7085–7090.

    Article  Google Scholar 

  • Efron, B., and Tibshirani, R. J. (1993). An introduction to the bootstrap. Chapman & Hall, London.

    Google Scholar 

  • Everitt, B. S. (1993). Cluster Analysis (3rd Edition). Halsted Press, New York.

    Google Scholar 

  • Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783–791.

    Google Scholar 

  • Felsenstein, J. (1988). Phylogenies from molecular sequences: Inference and reliability. Annual Review of Genetics 22: 521–565.

    Article  PubMed  Google Scholar 

  • Felsenstein, J. (2002). PHYLIP (Phylogeny Inference Package) version 3.6α3. Distributed by the author, Department of Genome Sciences, University of Washington, Seattle (http://evolution.gs.washington.edu/phylip.html).

  • Felsenstein, J., and Kishino, H. (1993). Is there something wrong with the bootstrap on phylogenies? A reply to Hillis and Bull. Systematic Biology 42: 193–200.

    Google Scholar 

  • Fisher, R. A. (1954). Statitical methods for research workers (12th Edition). Oliver & Boyd, Edinburgh.

    Google Scholar 

  • Fitch, W. M., and Margoliash, E. (1967). Construction of phylogenetic trees. Science 155: 279–284.

    PubMed  Google Scholar 

  • Fleagle, J. G. (1988). Primate adaptation and evolution. Academic Press, New York.

    Google Scholar 

  • Gaudry, A. (1862–1867). Animaux fossiles et géologie de l’Attique. Recherches faites en 1855–1856, 1860. Savy F., Paris.

    Google Scholar 

  • Gurland, J., and Tripathi, R. C. (1971). A simple approximation for unbiased estimation of the standard deviation. American Statistician 25: 30–32.

    Google Scholar 

  • Hartigan, J. A. (1967). Representation of similarity matrices by trees. Journal of the American Statistical Association 62: 1140–1158.

    Google Scholar 

  • Hedges, S. B. (1992). The number of replications needed for accurate estimation of the bootstrap P value in phylogenetic studies. Molecular Biology and Evolution 9: 366–369.

    PubMed  Google Scholar 

  • Hillis, D. M., and Bull, J. J. (1993). An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology 42: 182–192.

    Google Scholar 

  • Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6: 65–70.

    Google Scholar 

  • Jablonski, N. G. (1998). The Evolution of the doucs and snub-nosed monkey and the question of the phyletic unity of the odd-nosed colobines. In Jablonski, N. G. (ed.), The Natural History of the Doucs and Snub-nosed Monkeys, World Scientific, Singapore, pp. 13–52.

    Google Scholar 

  • Kid, K., and Sgaramella-Zonta, L. (1971). Phylogenetic analysis: concepts and methods. American Journal of Human Genetics 23: 235–252.

    PubMed  Google Scholar 

  • Lance, G. N., and Williams, W. T. (1967). Mixed-data classificatory programs. I. Agglomerative systems. Australian Computer Journal 1: 15–20.

    Google Scholar 

  • Le Calvé, G. (1985). Distances á centre. Statistique et Analyse des Données 10: 29–44.

    Google Scholar 

  • Li, W.-H., and Gouy, M. (1990). Statistical tests of molecular phylogenies. In Doolittle, R. F. (ed.), Molecular evolution: computer analysis of protein and nucleic acid sequences, Methods in Enzymology, 183, pp. 645–659.

  • Mahalanobis, P. C. (1936). On the generalized Distance in Statistics. Proceedings of the National Institute of Sciences, India 2: 49–55.

    Google Scholar 

  • Orloci, L. (1967). An agglomeration method for classification of plant communities. Journal of Ecology 55: 193–205.

    Google Scholar 

  • Penny, D., and Hendy, M. D. (1985). Testing methods of evolutionary tree construction. Cladistics 1: 266–278.

    Google Scholar 

  • Prentice, I. C. (1980). Multidimensional scaling as a research tool in Quaternary palynology: A review of theory and methods. Review of Palaeobotany and Palynology 31: 71–104.

    Article  Google Scholar 

  • Rzhetsky, A., and Nei, M. (1992). Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. Journal of Molecular Evolution 35: 367–375.

    Article  PubMed  Google Scholar 

  • Saitou, N., and Nei, M. (1987). The Neighbor-Joining method: a new method for reconstructing phylogenetic trees. Molecular Biolology and Evolution 4: 406–425.

    Google Scholar 

  • Sibson, R. (1972). Order invariant methods for data analysis. Journal of the Royal Statistical Society, ser. B (Statistical Methodology), 34: 311–349.

    Google Scholar 

  • Sneath, P. H. A., and Sokal, R. R. (1973). Numerical taxonomy. W. H. Freeman and Co., San Francisco.

    Google Scholar 

  • Sokal, R. R., and Rohlf, F. J. (1995). Biometry (3rd Edition). W. H. Freeman and Co., New York.

    Google Scholar 

  • Sokal, R. R., and Sneath, P. H. A. (1963). Principles of Numerical Taxonomy. W. H. Freeman and Compagny, San Francisco.

    Google Scholar 

  • Szalay, F. S., and Delson, E. (1979). Evolutionary History of the Primates. Academic Press, New York.

    Google Scholar 

  • Tateno, Y., Nei, M., and Tajima, F. (1982). Accuracy of estimated phylogenetic trees from molecular data. I. Distantly related species. Journal of Molecular Evolution 18: 387–404.

    Article  PubMed  Google Scholar 

  • Wilson, D. E., and Reeder, D. M. (1993). Editors. Mammal Species of the World. Smithsonian Institution Press.

  • Wright, S. P. (1992). Adjusted p-values for simultaneous inference. Biometrics 48: 1005–1013.

    Google Scholar 

  • Youlatos, D. (2003). Calcaneal features of the greek Miocene primate Mesopithecus pentelicus (Cercopithecoidea, Colobinae). Geobios 36: 229–239.

    Article  Google Scholar 

  • Zharkikh, A., and Li, W.-H. (1995). Estimation of confidence in phylogeny: the complete-and-partial bootstrap technique. Molecular Phylogeny and Evolution 4: 44–63.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Escarguel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Escarguel, G. Mathematics and the Lifeway of Mesopithecus. Int J Primatol 26, 801–823 (2005). https://doi.org/10.1007/s10764-005-5324-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10764-005-5324-4

Keywords

Navigation