Skip to main content
Log in

A Macro Tool to Characterize and Develop Key Competencies for the Mathematics Teacher’ Practice

International Journal of Science and Mathematics Education Aims and scope Submit manuscript

Abstract

The initial and continuing training of mathematics teachers continues to be one of the most pressing challenges facing the research community in mathematics education. In this regard, various research agendas have been proposed and developed. Among these, two stand out: the characterization and development of (1) didactic and mathematical knowledge that allows the teacher to favor the management of his classes, and (2) skills necessary for professional practice. Although various models have been proposed to attend to each of these agendas separately, there are no models that allow an explicit integration between the notions of knowledge and teacher competence. On the other hand, various studies show the need to have theoretical-methodological tools that operationalize the categories of knowledge and skills proposed by scientific literature. In this article, the didactic-mathematical knowledge (DMK) model is presented as a theoretical-methodological alternative that allows for both the analysis and the development of essential knowledge and skills for the teacher’s professional practice. In addition, it delves into a proposal of categories and subcategories of professional competencies necessary for teaching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Notes

  1. See Author (Pino-Fan et al., 2015) and the web http://enfoqueontosemiotico.ugr.es/pages/fprofesores.html.

References

  • An, S., & Wu, Z. (2012). Enhancing mathematics teachers’ knowledge of students’ thinking from assessing and analyzing misconceptions. International Journal of Science and Mathematics Education, 10(3), 717–753. https://doi.org/10.1007/s10763-011-9324-x

    Article  Google Scholar 

  • Archambault, L. M., & Barnett, J. H. (2010). Revisiting technological pedagogical content knowledge: Exploring the TPACK framework. Computers & Education, 55(4), 1656–1662. https://doi.org/10.1016/j.compedu.2010.07.009

    Article  Google Scholar 

  • Arsal, Z. (2014). Microteaching and pre-service teachers’ sense of self-efficacy in teaching. European Journal of Teacher Education, 37(4), 453–464. https://doi.org/10.1080/02619768.2014.912627

    Article  Google Scholar 

  • Assis, A., Godino, J. D., & Frade, C. (2012). As dimensões normativa e metanormativa em um contexto de aulas exploratório-investigativas [The normative and meta-normative dimensions in a context of exploratory-investigative classes]. RELIME: Revista Latinoamericana de Investigación en Matemática Educativa, 15(2), 171–198.

    Google Scholar 

  • Barmby, P., Bolden, D., & Thompson, L. (2014). Understanding and enriching problem solving in primary mathematics. Critical Publishing.

    Google Scholar 

  • Barquero, B., & Bosch, M. (2015). Didactic engineering as a research methodology: From fundamental situations to study and research paths. In A. Watson & M. Ohtani (Eds.), Task design in mathematics education - ICMI study 22 (pp. 249–273). https://doi.org/10.1007/978-3-319-09629-2_8

  • Bell, C. A., Wilson, S. M., Higgins, T., & McCoach, D. B. (2010). Measuring the effects of professional development on teacher knowledge: The case of developing mathematical ideas. Journal for Research in Mathematics Education, 41(5), 479–512. https://doi.org/10.2307/41110411

    Article  Google Scholar 

  • Beltrán-Pellicer, P., Medina, A., & Quero, M. (2018). Movies and TV series fragments in mathematics: Epistemic suitability of instructional designs. International Journal of Innovation in Science and Mathematics Education, 26(1), 16–26, 2018.

  • Biehler, R. (2005). Reconstruction of meaning as a didactical task: The concept of function as an example. In J. Kilpatrick, C. Hoyles, & O. Skovsmose (Eds.), Meaning in mathematics education (pp. 61–81). New York, NY: Springer. https://doi.org/10.1007/0-387-24040-3_5

  • Blömeke, S., & Delaney, S. (2012). Assessment of teacher knowledge across countries: A review of the state of research. ZDM, 44(3), 223–247. https://doi.org/10.1007/s11858-012-0429-7

    Article  Google Scholar 

  • Breda, A., & Lima, V. M. (2016). Case study on the didactic assessment over a final work of a master for mathematics teachers in service. REDIMAT, 5 (1), 74-103. https://doi.org/10.4471/redimat.2016.1955

  • Breda, A., Pino-Fan, L., & Font, V. (2017). Meta didactic-mathematical knowledge of teachers: Criteria for the reflection and assessment on teaching practice. EURASIAJournal of Mathematics, Science and Technology Education, 13(6), 1893–1918. https://doi.org/10.12973/eurasia.2017.01207a

  • Breda, A., Font, V., & Pino-Fan, L. (2018). Criterios valorativos y normativos en la Didáctica de las Matemáticas: el caso del constructo idoneidad didáctica [Evaluative and normative criteria in Didactics of Mathematics: The case of didactic suitability construct]. BOLEMA: Boletim de Educação Matemática, 32(60), 255–278. https://doi.org/10.1590/1980-4415v32n60a13

  • Brown, L., & Coles, A. (2012). Developing “deliberate analysis” for learning mathematics and for mathematics teacher education: How the enactive approach to cognition frames reflection. Educational Studies in Mathematics, 80(1–2), 217–231. https://doi.org/10.1007/s10649-012-9389-7

    Article  Google Scholar 

  • Burgos, M., Castillo, J., Beltrán, P., Giacomone, B., & Godino, J.D. (2020). Didactical analysis of a lesson on proportionality of a primary school textbook using tools of the onto-semiotic approach. Bolema, 34(66), 40–68. https://doi.org/10.1590/1980-4415v34n66a03.

  • Burgos, M., & Godino, J. D. (2022). Assessing the epistemic analysis competence of prospective primary school teachers on proportionality tasks. International Journal of Science and Mathematics Education. Online First. https://doi.org/10.1007/s10763-020-10143-0

    Article  Google Scholar 

  • Cai, J., Chen, T., Li, X., Xu, R., Zhang, S., Hu, Y., & Song, N. (2020). Exploring the impact of a problem-posing workshop on elementary school mathematics teachers’ conceptions on problem posing and lesson design. International Journal of Educational Research, 102, 101404. https://doi.org/10.1016/j.ijer.2019.02.004

    Article  Google Scholar 

  • Castro, W. F. (2011). Evaluación y desarrollo de competencias de análisis didáctico de tareas sobre razonamiento algebraico elemental en futuros profesores [doctoral thesis, Universidad de Granada]. http://enfoqueontosemiotico.ugr.es/pages/tesisdoctorales.html

  • Castro, W. F., Pino-Fan, L., & Velásquez-Echavarría, H. (2018). A proposal to enhance preservice teacher's noticing. EURASIA: Journal of Mathematics, Science and Technology Education, 14(11), em1569. https://doi.org/10.29333/ejmste/92017

  • Chai, C. S., Ng, E. M. W., Li, W., Hong, H.-Y., & Koh, J. H. L. (2013). Validating and modelling technological pedagogical content knowledge framework among Asian preservice teachers. Australasian Journal of Educational Technology, 29(1), 41–53. https://doi.org/10.14742/ajet.174

    Article  Google Scholar 

  • Chan Y. C. & Leung, A. (2013). Rotational symmetry: Semiotic potential of a transparency toolkit. In C. Margolinas (Ed.), Rotational symmetry: Semiotic potential of a transparency toolkit, task design in mathematics education. Proceedings of ICMI study 22 (pp. 35–44). Oxford, UK.

  • Cohen, L., Manion, L., & Morrison, K. (2011). Research methods in education. Routledge.

    Google Scholar 

  • Creswell, J.W. (2009). Research design: Qualitative, quantitative, and mixed methods approaches. Sage Publications.

  • Davis, B. (2008). Is 1 a prime number? Developing teacher knowledge through concept study. Mathematics Teaching in the Middle School, 14(2), 86–91. https://doi.org/10.2307/41182638

    Article  Google Scholar 

  • Donnelly, R., & Fitzmaurice, M. (2011). Towards productive reflective practice in microteaching. Innovations in Education and Teaching International, 48(3), 335–346. https://doi.org/10.1080/14703297.2011.593709

    Article  Google Scholar 

  • Falcade, R., Laborde, C., & Mariotti, M. A. (2007). Approaching functions: Cabri tool as instruments of semiotic mediation. Educational Studies in Mathematics, 66, 317–333.

    Article  Google Scholar 

  • Felmer, P., Pehkonen, E., & Kilpatrick, J. (Eds.). (2016). Posing and solving mathematical problems: Advances and new perspectives. Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-28023-3

  • Felmer, P., Liljedhal, P., & Koichu, N. (Eds.). (2019). Problem solving in mathematics instruction and teacher professional development. Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-030-29215-7

  • Fernández, C., & Yoshida, M. (2004). Lesson study: A Japanese approach to improving mathematics teaching and learning. Lawrence Erlbaum. https://doi.org/10.4324/9781410610867

    Book  Google Scholar 

  • Fernández, C. (2011). Análisis de temas en los libros de texto de matemáticas [Analysis of topics in mathematics textbooks]. UNO: Revista de Didáctica de las Matemáticas, 56, 77–85.

  • Font, V. (2011). Competencias profesionales en la formación inicial de profesores de matemáticas de secundaria [Professional competences in initial secondary education mathematics teachers’ training]. UNIÓN: Revista Iberoamericana de Educación Matemática, 26, 9–25.

  • Font, V., Godino, J. D., & Gallardo, J. (2013). The emergence of objects from mathematical practices. Educational Studies in Mathematics, 82(1), 97–124. https://doi.org/10.1007/s10649-012-9411-0

  • Fortuny, J. M., & Rodríguez, R. (2012). Aprender a mirar con sentido: facilitar la interpretación de las interacciones en el aula [Learn to notice and interpret classroom interactions]. Avances de Investigación en Educación Matemática, 1, 23–37. https://doi.org/10.35763/aiem.v1i1.3

    Article  Google Scholar 

  • Gellert, U., Becerra, R., & Chapman, O. (2013). Research methods in mathematics teacher education. In A. Bishop, M. A. K. Clements, C. Keitel-Kreidt, J. Kilpatrick, & F. K.-S. Leung (Eds.), Third international handbook of mathematics education (pp. 327–360). New York, NY: Springer. https://doi.org/10.1007/978-1-4614-4684-2_11

  • Giacomone, B. (2019). Análisis a priori de tareas matemáticas. Un componente del análisis didáctico. Uno Revista De Didáctica De Las Matemáticas, 86, 25–31.

    Google Scholar 

  • Giménez, J., Font, V., & Vanegas, Y. (2013). Designing professional tasks for didactical analysis as a research process. In C. Margolinas (Ed.), Task Design in Mathematics Education: Proceedings of ICMI Study 22 (pp. 579–587). Oxford, England: International Commission on Mathematical Instruction

  • Godino, J. D. (2009). Categorías de análisis de los conocimientos del profesor de matemáticas [Categories of analysis of the mathematics teacher’s knowledge]. UNIÓN: Revista Iberoamericana de Educación Matemática, 20, 13–31.

    Google Scholar 

  • Godino, J. D., Contreras, A., & Font, V. (2006). Análisis de procesos de instrucción basado en el enfoque ontológico-semiótico de la cognición matemática [Analysis of instruction processes based on the ontologicalsemiotic approach to mathematical cognition]. Recherches en Didactiques des Mathematiques, 26(1), 39-88.

  • Godino, J. D., Batanero, C., & Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM – Mathematics Education, 39(1), 127–135. https://doi.org/10.1007/s11858-006-0004-1

  • Godino, J. D., Wilhelmi, M. R., & Bencomo, D. (2005). Suitability criteria of a mathematical instruction process. A teaching experience of the function notion. Mediterranean Journal for Research in Mathematics Education, 4(2), 1–26.

    Google Scholar 

  • Godino, J. D., Batanero, C., Rivas, H., & Arteaga, P. (2013). Componentes e indicadores de idoneidade de programas de formação de professores em educação matemática [Suitability components and indicators of teachers’ education programs in mathematics education]. REVEMAT: Revista Eletrônica de Educação Matemática, 8(1), 46–74. https://doi.org/10.5007/1981-1322.2013v8n1p46

  • Godino. J.D., Giakamone, B., Batanero, C., & Font, V. (2017). Enfoque Ontosemiótico de los Conocimentos y Competencias del Profesor de Matemáticas [Onto-Semiotic Approach to Mathematics Teacher's Knowledge and Competences]. Bolema, 31(57), 90–113. https://doi.org/10.1590/1980-4415v31n57a05

  • Godino, J. D., Batanero, C., & Font, V. (2019). The onto-semiotic approach: implications for the prescriptive character of didactics. For the Learning of Mathematics, 39(1), 38–43.

  • Hill, H. C., Ball, D. L., & Schlling, S. G. (2008). Unpacking pedagogical content knowledge: Conceptualizing and measuring teachers’ topic-specific knowledge of students. Journal for Research in Mathematics Education, 39, 372–400.

    Article  Google Scholar 

  • Hummes, V. (2022). Uso combinado del lesson study y de los criterios de idoneidad didáctica para el desarrollo de la reflexión sobre la práctica en la formación de profesores de matemáticas. (Unpublished doctoral dissertation). Universitat de Barcelona, España.

  • Jones, K. (2000). Providing a foundation for deductive reasoning: Students’ interpretations with using dynamic geometry software and their evolving mathematical explanations. Educational Studies in Mathematics, 44(1–3), 55–85.

    Article  Google Scholar 

  • Klafki, W. (1995). Didactic analysis as the core of preparation of instruction (Didaktische Analyse als Kern der Unterrichtsvorbereitung). Journal of Curriculum Studies, 27(1), 13–30. https://doi.org/10.1080/0022027950270103

    Article  Google Scholar 

  • Koh, J. H. L., Chai, C. S., Wong, B., & Hong, H.-Y. (2015). Technological Pedagogical Content Knowledge (TPACK) and design thinking: A framework to support ICT lesson design for 21st century learning. The Asia-Pacific Education Researcher, 24(3), 535–543. https://doi.org/10.1007/s40299-015-0237-2

    Article  Google Scholar 

  • Korthagen, F. (2010). La práctica, la teoría y la persona en la formación del profesorado [Practice, theory, and person in teachers’ training]. Revista Interuniversitaria De Formación Del Profesorado, 68(24), 83–101.

    Google Scholar 

  • Kunter, M., Baumert, J., Blum, W., Klusmann, U., Krauss, S., & Neubrand, M. (Eds.). (2013). Cognitive activation in the mathematics classroom and professional competence of teachers. Results from the COACTIVE Project. New York, NY: Springer. https://doi.org/10.1007/978-1-4614-5149-5

  • Leuders, T., Dörfler, T., Leuders, J., & Philipp, K. (2018) Diagnostic competence of mathematics teachers: Unpacking a complex construct. In T. Leuders, K. Philipp, & J. Leuders (Eds.), Diagnostic competence of mathematics teachers: Unpacking a complex construct in teacher education and teacher practice (pp. 3–31). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-66327-2_1

  • Llinares, S. (2011). Tareas matemáticas en la formación de maestros: caracterizando perspectivas [Mathematical tasks in teachers’ training: Characterising perspectives]. NÚMEROS: Revista de Didáctica de las Matemáticas, 78, 5–16.

    Google Scholar 

  • Llinares, S. (2012). Construcción de conocimiento y desarrollo de una mirada profesional para la práctica de enseñar matemáticas en entornos en línea [Knowledge building and development of professional noticing for the mathematics teaching. What are we learning?]. Avances de Investigación en Educación Matemática, 2, 53–70. https://doi.org/10.35763/aiem.v1i2.18

    Article  Google Scholar 

  • Lugo-Armenta, J.G., & Pino-Fan, L. (2021). Inferential statistical reasoning of math teachers: experiences in virtual contexts generated by the Covid-19 pandemic. Education Sciences, 11(7), 363. https://doi.org/10.3390/educsci11070363

  • Malaspina, U. (2017). La creación de problemas como medio para potenciar la articulación de competencias y conocimientos del profesor de matemáticas [Problem posing as a means to foster the articulation of mathematics teacher’s competences and knowledge]. In J. M. Contreras et al. (Eds.), Actas del Segundo Congreso International Virtual sobre el Enfoque Ontosemiótico del Conocimiento y la Instrucción Matemáticos. Available at: http://enfoqueontosemiotico.ugr.es/civeos/malaspina.pdf

  • Mariotti, M. A. (2002). Justifying and proving in the Cabri environment. International Journal of Computers for Mathematical Learning, 6(3), 257–281.

    Article  Google Scholar 

  • Mason, J., & Johnston-Wilder, S. (2004). Designing and using mathematical tasks. London, England: Tarquin.

  • Mergler, A. G., & Tangen, D. (2010). Using microteaching to enhance teacher efficacy in pre-service teachers. Teaching Education, 21(2), 199–210. https://doi.org/10.1080/10476210902998466

    Article  Google Scholar 

  • Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge. Teachers College Record, 108(6), 1017–1054.

    Article  Google Scholar 

  • Molina, O.J. (2019). Sistema de normas que influyen en procesos de argumentación: un curso de geometría del espacio como escenario de investigación [System of norms that influence argumentation processes: A space geometry course as a research setting] (Doctoral thesis). Retrieved from http://enfoqueontosemiotico.ugr.es/documentos/Tesis_OMolina.pdf

  • National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Richmond, VA: Author.

  • Neubrand, M. (2018). Conceptualizations of professional knowledge for teachers of mathematics. ZDM, 50(4), 601–612. https://doi.org/10.1007/s11858-017-0906-0

    Article  Google Scholar 

  • Niss, M. (2015). Mathematical competencies and PISA. In K. Stacey & R. Turner (Eds.), Assessing mathematical literacy: The PISA experience (pp. 35–55). Springer International Publishing.

    Chapter  Google Scholar 

  • Niss, M., & Højgaard, T. (2019). Mathematical competencies revisited. Educational Studies in Mathematics, 102(1), 9–28. https://doi.org/10.1007/s10649-019-09903-9

    Article  Google Scholar 

  • Organization Economic Co-operation and Development. (2004). Learning for tomorrow’s world: First results from PISA 2003. Paris, France: Author.

  • Parra- Urrea, Y. (2021). Conocimiento didáctico-matemático de futuros profesores chilenos de enseñanza media sobre la noción de función: Una experiencia en contextos de microenseñanza [doctoral thesis, Universidad de LosLagos]. http://edumat.ulagos.cl/tesis/

  • Partanen, A. M., & Kaasıla, R. (2015). Sociomathematical norms negotiated in the discussions of two small groups investigating calculus. International Journal of Science and Mathematics Education, 13(4), 927–946. https://doi.org/10.1007/s10763-014-9521-5

    Article  Google Scholar 

  • Petrou, M., & Goulding, M. (2011). Conceptualising teachers’ mathematical knowledge in teaching. In T. Rowland & K. Ruthven (Eds.), Mathematical knowledge in teaching (pp. 9–25). Dordrecht, The Netherlands: Springer. https://doi.org/10.1007/978-90-481-9766-8_2

  • Pino-Fan, L., Godino, J. D., & Font, V. (2011). Faceta epistémica del conocimiento didáctico-matemático sobre la derivada [Epistemic Facet of the Didactic-Mathematics Knowledge About The Derivative ]. Educação Matemática Pesquisa, 13(1), 141–178. https://revistas.pucsp.br/index.php/emp/article/view/4423

  • Pino-Fan, L. (2013). Evaluación de la faceta epistémica del conocimiento didáctico-matemático de futuros profesores de bachillerato sobre la derivada [Evaluation of the epistemic aspect of the didactic-mathematical knowledge of future secondaryteachers on the derivative] (Doctoral thesis). Universidad de Granada. http://enfoqueontosemiotico.ugr.es/pages/tesisdoctorales.html

  • Pino-Fan, L., & Godino, J. D. (2015). Perspectiva ampliada del conocimiento didáctico-matemático del profesor [Extendedperspective of didactic-mathematical knowledge of the teacher]. PARADIGMA, 36(1), 87–109.

  • Pino-Fan, L., Assis, A., & Castro, W. F. (2015). Towards a methodology for the characterization of teachers’ didacticmathematical knowledge. EURASIA: Journal of Mathematics, Science and Technology Education, 11(6), 1429–1456. https://doi.org/10.12973/eurasia.2015.1403a

  • Pino-Fan, L., Font, V., & Breda, A. (2017a). Mathematics teachers’ knowledge and competences model based on the ontosemiotic approach. In B. Kaur, W. K. Ho, T. L. Toh & B. H. Choy (Eds.), Proceedings of the 41st Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 33-40). Singapore: PME.

  • Pino-Fan, L., Font, V., Gordillo, W., Larios, V., & Breda, A. (2017b). Analysis of the meanings of the antiderivative used by students of the first engineering courses. International Journal of Science and Mathematics Education, 16, 1091–113. https://doi.org/10.1007/s10763-017-9826-2

  • Pino-Fan, L., Godino, J. D., & Font, V. (2018). Assessing key epistemic features of didactic-mathematical knowledge of prospective teachers: the case of the derivative. Journal of Mathematics Teacher Education, 21(1), 63–94. https://doi.org/10.1007/s10857-016-9349-8

  • Pino-Fan, L. & Parra-Urrea, Y. (2021). Criterios para orientar el diseño y la reflexión de clases sobre funciones ¿Qué nos dice la literatura científica? [Criteria to guide the design and reflection of classes on functions. What does the scientific literature tell us?]. UNO. Revista de Didáctica de las Matemáticas, 91, 45–54.

  • Pochulu, M., Font, V., & Rodríguez, M. (2016). Desarrollo de la competencia en análisis didáctico de formadores de futuros profesores de matemática a través del diseño de tareas [Development of the competence in didactic analysis of trainers of future mathematics teachers through task design]. RELIME: Revista Latinoamericana deInvestigación en Matemática Educativa, 19(1), 71–98. https://doi.org/10.12802/relime.13.1913

  • Ponte, J. P. (2005). Gestão curricular em Matemática. In GTI (Ed.), O professor e o desenvolvimento curricular (pp. 11–34). Lisboa: APM

  • Presmeg, N. (2014). Contemplating visualization as an epistemological learning tool in mathematics. ZDM, 46(1), 151–157. https://doi.org/10.1007/s11858-013-0561-z

    Article  Google Scholar 

  • Prince, M. J., & Felder, R. M. (2006). Inductive teaching and learning methods: Definitions, comparisons, and research bases. Journal of Engineering Education, 95(2), 123–138. https://doi.org/10.1002/j.2168-9830.2006.tb00884.x

    Article  Google Scholar 

  • Puig, L. (1997). Análisis fenomenológico. En L. Rico (Coord.) La educación matemática en la enseñanza secundaria (págs. 61–94). Barcelona: Horsori / ICE.

  • Ramos, A. B., & Font, V. (2008). Criterios de idoneidad y valoración de cambios en el proceso de instrucción matemática [Suitability and assessment criteria of changes in the mathematics instruction process]. RELIME: Revista Latinoamericana de Investigación en Matemática Educativa, 11(2), 233–265.

  • Rivas, M. (2012). Análisis epistémico y cognitivo de tareas de proporcionalidad en la formación de profesores de educación primaria. [doctoral thesis, Universidad de Granada]. http://enfoqueontosemiotico.ugr.es/pages/tesisdoctorales.html

  • Rowland, T., & Ruthven, K. (Eds.). (2011). Mathematical knowledge in teaching. Springer. https://doi.org/10.1007/978-90-481-9766-8_1

    Book  Google Scholar 

  • Rowland, T., Huckstep, P., & Thwaites, A. (2005). Elementary teachers’ mathematics subject knowledge: The knowledge quartet and the case of Naomi. Journal of Mathematics Teacher Education, 8(3), 255–281.

    Article  Google Scholar 

  • Rowland, T. (2014). Frameworks for conceptualizing mathematics teacher knowledge. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 235–238). Dordrecht, The Netherlands: Springer. https://doi.org/10.1007/978-94-007-4978-8_63

  • Rubio Goycochea, N. (2012). Competencia del profesorado en el análisis didáctico de prácticas, objetos y procesos matemáticos [Teachers competence in didactic analysis of mathematical practices, objects, and processes] (Doctoral thesis). Retrieved from Tesis Doctorals in Xarxa. (http://www.tdx.cat/handle/10803/294031)

  • Sánchez, V., & García, M. (2014). Socio-mathematical and mathematical norms related to definition in pre-service primary teachers’ discourse. Educational Studies in Mathematics, 85(2), 305–320. https://doi.org/10.1007/s10649-013-9516-0

    Article  Google Scholar 

  • Schack, E. O., Fisher, M. H., & Wilhelm, J. (Eds.). (2017). Teacher noticing: Bridging and broadening perspectives, contexts, and frameworks. New York, NY: Springer. https://doi.org/10.1007/978-3-319-46753-5

  • Scheiner, T., Montes, M. A., Godino, J. D., Carrillo, J., & Pino-Fan, L. (2019). What makes mathematics teacher knowledge specialized? Offering alternative views. International Journal of Science and Mathematics Education, 17(1), 153–172. https://doi.org/10.1007/s10763-017-9859-6

  • Schoenfeld, A. H. (2010). How we think: A theory of goal-oriented decision making and its educational applications. Routledge.

    Book  Google Scholar 

  • Schoenfeld, A., & Kilpatrick, J. (2008). Towards a theory of profiency in teaching mathematics. In D. Tirosh & T. L. Wood (Eds.), Tools and processes in mathematics teacher education (pp. 321–354) Rotterdam, The Netherlands: Sense Publishers. https://doi.org/10.1163/9789087905460_016

  • Seckel, J. M. S. (2016). Competencia en análisis didáctico en la formación inicial de profesores de educación general básica con mención en matemática. (Doctoral dissertation). Universitat de Barcelona, Barcelona. Retrieved from http://hdl.handle.net/2445/99644

  • Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1–22. https://doi.org/10.17763/haer.57.1.j463w79r56455411

    Article  Google Scholar 

  • Silverman, J., & Thompson, P. W. (2008). Toward a framework for the development of mathematical knowledge for teaching. Journal of Mathematics Teacher Education, 11(6), 499–577. https://doi.org/10.1007/s10857-008-9089-5

    Article  Google Scholar 

  • Stahnke, R., Schueler, S., & Roesken-Winter, B. (2016). Teachers’ perception, interpretation, and decision-making: A systematic review of empirical mathematics education research. ZDM, 48(1–2), 1–27. https://doi.org/10.1007/s11858-016-0775-y

    Article  Google Scholar 

  • Tzur, R., Sullivan, P., & Zaslavsky, O. (2008). Examining teachers’ use of (non-routine) mathematical tasks in classrooms from three complementary perspectives: Teacher, teacher educator, researcher. In O. Figueras & A. Sepúlveda (Eds.), Proceedings of the joint meeting of PME 32 and PME-NA XXX , Vol. 1, pp. 133–137). Mexico City: PME.

  • Vásquez, C., & Alsina, A. (2015). Conocimiento didáctico-matemático del profesorado de educación primaria sobre probabilidad: diseño, construcción y validación de un instrumento de evaluación [Primary school teachers’ didactic-mathematical knowledge when teaching probability: Development and validation of an evaluation instrument]. BOLEMA: Boletim de Educação Matemática, 29(52), 681–703. https://doi.org/10.1590/1980-4415v29n52a13

    Article  Google Scholar 

  • Villalobos, F. X. (2008). Resolución de problemas matemáticos: Un cambio epistemológico con resultados metodológicos [Mathematical problem-solving: An epistemological change with methodological results]. Revista Iberoamericana Sobre Calidad, Eficacia y Cambio En Educación, 6(3), 36–58.

    Google Scholar 

  • Watson, A., & Ohtani, M. (Eds.). (2015). Task design in mathematics education. Springer. https://doi.org/10.1007/978-3-319-09629-2

    Book  Google Scholar 

  • Weinert, F. E. (2001). Concept of competence: A conceptual clarification. In D. S. Rychen & L. H. Salganik (Eds.), Defining and selecting key competencies (pp. 45–65). Hogrefe & Huber Publishers.

    Google Scholar 

  • Zaslavsky, O., & Sullivan, P. (Eds.). (2011). Constructing knowledge for teaching secondary mathematics. Boston, MA: Springer. https://doi.org/10.1007/978-0-387-09812-8

Download references

Acknowledgements

This work has been developed within the framework of the project Fondecyt 1200005, funded by Agencia Nacional de Investigación y Desarrollo (ANID) of Chile.

Funding

This article has been developed within the framework of the research project Fondecyt 1200005, funded by Agencia Nacional de Investigación y Desarrollo (ANID) of Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis R. Pino-Fan.

Ethics declarations

Ethics Approval

The authors have complied in the writing of the article with all the ethical guidelines established by the journal.

Informed Consent

The authors of this article are informed and accept the ethics policies, standards, and guidelines of the journal.

Conflict of Interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pino-Fan, L.R., Castro, W.F. & Moll, V.F. A Macro Tool to Characterize and Develop Key Competencies for the Mathematics Teacher’ Practice. Int J of Sci and Math Educ 21, 1407–1432 (2023). https://doi.org/10.1007/s10763-022-10301-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10763-022-10301-6

Keywords

Navigation