Skip to main content

Advertisement

Log in

Enhancing Education for Sustainable Development Through Geographical Perspectives in Chemistry Teaching

  • Published:
International Journal of Science and Mathematics Education Aims and scope Submit manuscript

Abstract

Chemistry, with its related technical applications, is of crucial importance for creating a sustainable future. Without chemistry, current challenges will be difficult to solve. Such problems include meeting most of the Sustainable Development Goals (SDGs) announced by the United Nations and adherence to planetary limits, for example, novel chemical substances being released to the environment, biochemical flows, and climate change. Such challenges can, however, only be solved via transdisciplinary approaches. They can never be fully explored by a single discipline only, either in reality or in the context of teaching and learning. In order to strengthen education for sustainable development (ESD), we suggest including geographical perspectives in science education. Geography commits itself to the analysis of human-environment systems and combines social perspectives with those found in the natural sciences. In our opinion, such an approach can increase the educational value of science learning, e.g. in the case of chemistry education. An exploratory interview study with twelve purposefully selected chemistry teachers was recently conducted in order to explore chemistry teachers’ views on implementing geographical perspectives. This study reveals that German chemistry teachers view such inclusion as generally positive, but also recognize limitations in the approach due to curricular and time constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aguirre, J., & Speer, N. M. (2000). Examining the relationship between beliefs and goals in teacher practice. The Journal of Mathematical Behavior, 18, 327–356.

    Google Scholar 

  • Anastas, P. T., & Warner, C. J. (1998). Green chemistry: Theory and practice. Oxford: Oxford University Press.

    Google Scholar 

  • Bedehäsing, J., & Padberg, S. (2017). Globale Krise, Große Transformation, Change Agents: Heiße Eisen für die Geographiedidaktik? [Global crisis, transition, change agents: A hot potato for geography educators?]. GW-Unterricht, 146, 19–31.

    Google Scholar 

  • Bennett, J., Lubben, F., & Hogarth, S. (2007). Bringing science to life: A synthesis of the research evidence on the effects of context-based and STS approaches to science teaching. Science Education, 91, 347–370.

    Google Scholar 

  • Burmeister, M., Rauch, F., & Eilks, I. (2012). Education for sustainable development (ESD) and chemistry education. Chemistry Education Research and Practice, 13, 59–68.

  • Bybee, R. (1991). Planet earth in crisis: How should science educators respond? The American Biology Teacher, 53(3), 146–153.

    Google Scholar 

  • Crutzen, P. J., & Stoermer, E. F. (2000). The “Anthropocene”. IGBP Newsletter, 41, 17.

    Google Scholar 

  • Czerniak, C. M., & Johnson, C. C. (2014). Interdisciplinary science teaching. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research in science education (Vol. II, pp. 395–411). New York: Routledge.

    Google Scholar 

  • Czerniak, C. M., Lumpe, A. T., & Haney, J. J. (1999). Science teachers’ beliefs and intentions to implement thematic units. Journal of Science Teacher Education, 10, 123–145.

    Google Scholar 

  • Edsand, H. E., & Broich, T. (2019). The impact of environmental education on environmental and renewable energy technology awareness: Empirical evidence from Colombia. International Journal of Science and Mathematics Education, 1-24.

  • Eilks, I. & Hofstein, A. (2014). Combining the question of the relevance of science education with the idea of education for sustainable development. In I.

  • Eilks, I., & Ralle, B. (2002). Participatory action research in chemical education. In B. Ralle & I. Eilks (Eds.), Research in chemical education – What does it mean? (pp. 87–98). Aachen: Shaker.

  • Eilks, S. M., & Ralle, B. (Eds.). (n.d.). Science education research and education for sustainable development (pp. 3–14). Aachen: Shaker.

  • Eilks, I., & Zuin, V. (2018). Special issue "green chemistry in education". Current opinion in green and sustainable chemistry, 13, A4–A6 16 ff.

  • Ericsson, K. A., Krampe, R. T., & Tesch-Römer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100(3), 363–406.

    Google Scholar 

  • Gans, P., & Hemmer, I. (Eds.). (2015). Zum Image der Geographie in Deutschland–Ergebnisse einer empirischen Studie [On the image of geography in Germany-Results of an empirical study]. Leipzig: Leibniz-Institut für Länderkunde.

    Google Scholar 

  • Gebhardt, H., Glaser, R., Radtke, U., & Reuber, P. (2011). Geographie–Physische Geographie und Humangeographie [Geography–Physical geography and humangeography]. Heidelberg: Spektrum.

    Google Scholar 

  • German Geographical Society (Eds.). (2014). Educational standards in geography for the intermediate school certificate-With sample assignments. vgdh.geographie.de/wp-content/docs/2014/10/geography_education.pdf (20.10.2018).

  • Grindsted, T. S. (2015). The matter of geography in education for sustainable development: The case of Danish university geography. In W. Leal Filho (Ed.), Transformative approaches to sustainable development at universities (pp. 13–24). Cham: Springer.

    Google Scholar 

  • Guest, G., MacQueen, K. M., & Namey, E. E. (2012). Applied thematic analysis. Thousand Oaks: SAGE Publications, Inc..

    Google Scholar 

  • Häsing, P. (2009). Fächerübergreifender Unterricht in der gymnasialen Oberstufe aus Sicht der Lehrender–eine qualitative Studie [Interdisciplinary teaching in upper secondary school from the teachers’point of view-A qualitative study]. University of Kassel, Kassel: Kassel university press.

  • Hemmer, I., & Hemmer, M. (2017). Teachers’ interests in geography topics and regions–How they differ from students’ interests? Empirical findings. Review of International Geographical Education Online, 7(1) Spring), 9–23.

    Google Scholar 

  • Hofstein, A., Eilks, I., & Bybee, R. (2011). Societal issues and their importance for contemporary science education – A pedagogical justification and the state-of-the-art in Israel, Germany and the USA. International Journal of Science and Mathematics Education, 9, 1459–1483.

  • Hopf, C. & Schmidt, C. (1993). Zum Verhältnis von innerfamilialen sozialen Erfahrungen, Persönlichkeitsentwicklung und politischen Orientierungen: Dokumentation und Erörterung des methodischen Vorgehens in einer Studie zu diesem Thema [On the relationship between inner-familial social experiences, personality development and political orientations: Documentation and discussion of the methodological approach in a study on this topic]. Retrieved from www.ssoar.info/ssoar/handle/document/45614 (15.5.2019).

  • Jegsted, K. M., & Sinnes, A. T. (2015). Chemistry teaching for the future: A model for secondary chemistry education for sustainable development. International Journal of Science Education, 37(4), 655–683.

    Google Scholar 

  • Joppich, A., & Uhlenwinkel, A. (2017). Fächerübergreifender Unterricht zur Nachhaltigkeit: wissens- oder verhaltensorientiert? [Focusing on knowledge or behaviour?-Cross-disciplinary curriculum-making in the context of education for sustainable development.]. GW-Unterricht, 145(1), 18–27.

    Google Scholar 

  • Juntunen, M. K., & Aksela, M. K. (2014). Education for sustainable development in chemistry–Challenges, possibilities and pedagogical models in Finland and elsewhere. Chemistry Education Research and Practice, 15, 488–500.

    Google Scholar 

  • Karpudewan, M., Ismail, Z., & Roth, W. M. (2012). The efficacy of a green chemistry laboratory-based pedagogy: Changes in environmental values of Malaysia pre-service teachers. International Journal of Science and Mathematics Education, 10(3), 497–529.

    Google Scholar 

  • Kuckartz, U. (2014). Qualitative text analysis. Methods, practice, computer assistance. Thousand Oaks: Sage.

    Google Scholar 

  • Kuckartz, U. (2018). Qualitative Inhaltsanalyse. Methoden, Praxis, Computerunterstützung [Qualitative text analysis. Methods, practice, computer assistance]. Beltz Juventa: Weinheim.

    Google Scholar 

  • Kultusminister der Länder in der Bundesrepublik Deutschland (KMK) (2017). Zur Situation und zu Perspektiven für nachhaltige Entwicklung [On the situation and perspectives for sustainable development]. Retrieved from kmk.org/fileadmin/Dateien/veroeffentlichungen_beschluesse/2017/2017_03_17-Bericht-BNE-2017.pdf (01.01.2019).

  • Labudde, P. (2014). Fächerübergreifender naturwissenschaftlicher Unterricht–Mythen, Definitionen, Fakten [Interdisciplinary science instruction: Myths, definitions, facts]. Zeitschrift für Didaktik der Naturwissenschaften, 20(1), 11–19.

    Google Scholar 

  • Mahaffy, P. G. (2014). Telling time: Chemistry education in the anthropocene epoch. Journal of Chemical Education, 91, 463–465.

    Google Scholar 

  • Mahaffy, P. G., Krief, A., Hopf, H., Mehta, G., & Matlin, S. A. (2018). Reorienting chemistry education through systems thinking. Nature Reviews Chemistry, 2(0126), 1–3.

    Google Scholar 

  • Mamlok-Naaman, R., Eilks, I., Bodner, G., & Hofstein, A. (2018). Professional development of chemistry teachers. Cambridge: Royal Society of Chemistry.

  • Matlin, S. A., Mehta, G., Hopf, H., & Krief, A. (2015). The role of chemistry in inventing a sustainable future. Nature Chemistry, 7, 941–943.

    Google Scholar 

  • Mazúr, E., & Urbánek, J. (1983). Space in geography. GeoJournal, 7(2), 139–143.

    Google Scholar 

  • Meadows, D. H., Meadows, D. L., Randers, J., & Behrens, W. W. (1972). The limits to growth. New York: Universe Books.

    Google Scholar 

  • Mönter, L. O. (2018). Building bridges with geography towards transformative education-The example “Climate Changes Cities”. In I. Eilks, S. Markic, & B. Ralle (Eds.), Building bridges across disciplines for transformative education and a sustainable future (pp. 141–152). Aachen: Shaker.

    Google Scholar 

  • Otto, K.-H. (2015). Geographie und Scientific Literacy–Der Beitrag der Geographie zur naturwissenschaftlichen (Grund-) Bildung [Geography and scientific literacy-The contribution of geography to science (primary) Bildung]. In K.-H. Otto (Ed.), Geographie und naturwissenschaftliche Bildung (pp. 1–22). Bochum: HGD-Symposium.

    Google Scholar 

  • Patton, M. Q. (1990). Qualitative sampling and research methods. London: Sage.

    Google Scholar 

  • Rempfler, A., & Uphues, R. (2012). System competence in geography education development of competence models, diagnosis pupils’ achievement. European Journal of Geography, 3(1), 6–22.

    Google Scholar 

  • Sadler, T. D. (2011). Socio-scientific issues in the classroom. Dordrecht: Springer.

    Google Scholar 

  • Simonneaux, J., & Simonneaux, J. (2012). Educational configurations for teaching environmental socioscientific issues within the perspective. Research in Science Education, 42, 75–94.

    Google Scholar 

  • Sjöström, J. (2013). Towards Bildung-oriented science education. Science Education, 22, 1873–1890.

    Google Scholar 

  • Sjöström, J., Eilks, I., & Zuin, V. G. (2016). Towards eco-reflexive science education - a critical reflection about educational implications of green chemistry. Science & Education, 25, 321–341.

  • Stables, A., & Scott, W. A. H. (2002). The quest for holism in education for sustainable development. Environmental Education Research, 8(1), 53–60.

    Google Scholar 

  • Steffen, W., Richardson, K., Rockström, J., Cornell, S. E., Fetzer, I., Bennett, I. M., Biggs, R., Carpenter, S. R., de Vries, W., de Wit, C. A., Folke, C., Gerten, D., Heinke, J., Mace, G. M., Persson, L. M., Ramanathan, V., Reyers, B., & Sörlin, S. (2015a). Planetary boundaries: Guiding human development on a changing planet. Science, 347(6223), 736–747.

    Google Scholar 

  • Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O., & Ludwig, C. (2015b). The trajectory of the Anthropocene: The great acceleration. The Anthropocene Review, 2(1), 81–98.

    Google Scholar 

  • Stolz, M., Witteck, T., Marks, R., & Eilks, I. (2013). Reflecting socio-scientific issues for science education coming from the case of curriculum development on doping in chemistry education. Eurasia Journal of Mathematics, Science and Technology Education, 9, 361–370.

  • Stuckey, M., Hofstein, A., Mamlok-Naaman, R., & Eilks, I. (2013). The meaning of ‘relevance’ in science education and its implications for the science curriculum. Studies in Science Education, 49, 1–34.

  • Stübig, F., Ludwig, P. H., Bosse, D., Gessner, E., & Lorberg, F. (2006). Bestandsaufnahme zur Praxis fächerübergreifenden Unterrichts in der gymnasialen Oberstufe im Bundesland Hessen [Inventory of the practice of interdisciplinary teaching in upper secondary education in the state of Hesse]. Kassel: Kassel university press.

    Google Scholar 

  • Swanborn, P. G. (1996). A common base for quality control criteria in quantitative and qualitative research. Quality & Quantity, 30(1), 19–35.

    Google Scholar 

  • Tytler, R. (2012). Socio-scientific issues, sustainability and science education. Research in Science Education, 42, 155–163.

    Google Scholar 

  • Uitto, A., & Saloranta, S. (2017). Subject teachers as educators for sustainability: A survey study. Education in Science, 7(8), 1–19.

    Google Scholar 

  • United Nations (UN). (2015). Transforming our world: The 2030 agenda for sustainable development. New York: UN.

    Google Scholar 

  • United Nations Environment Programme (UNEP) (2019). Global Chemicals Outlook II. https://www.unenvironment.org/explore-topics/chemicals-waste/what-wedo/policy-and-governance/global-chemicals-outlook (01.06.2019).

  • Van der Heijden, H. R. M. A., Geldens, J. J. M., Beijaard, D., & Popeijus, H. L. (2015). Characteristics of teachers as change agents. Teachers and Teaching, 21(6), 681–699.

    Google Scholar 

  • Verloop, N., van Driel, J., & Meijer, P. (2001). Teacher knowledge and the knowledge base of teaching. International Journal of Educational Research, 35, 441–461.

    Google Scholar 

  • Vilches, A., & Gil-Pérez, D. (2013). Creating a sustainable future: Some philosophical and educational considerations for chemistry teaching. Science & Education, 22, 1857–1872.

    Google Scholar 

  • Weichhart, P. (2003). Physische Geographie und Humangeographie–eine schwierige Beziehung: Skeptische Anmerkungen zu einer Grundfrage der Geographie und zum Münchner Projekt einer “Integrativen Umweltwissenschaft” [Physical geography and human geography-A difficult relationship: skeptical remarks on a fundamental question of geography and the Munich project of an “Integrative Environmental Science”]. In Heinritz, G. (Eds.), “Integrative Ansätze in der Geographie–Vorbild oder Trugbild?Münchner Symposium zur Zukunft der Geographie (pp. 17–34). 28. Eine Dokumentation. Passau.

  • World Commission on Environment and Development (WCED) (1987). Our common future. Retrieved from www.un-documents.net/wced-ocf.htm (01.06.2019).

  • Zeidler, D. L. (2015). Socioscientific issues. In R. Gunstone (Ed.), Encyclopedia of science education (pp. 998–1003). Berlin: Springer Science+Business Media.

    Google Scholar 

  • Zowada, C., Gulacar, O., & Eilks, I. (2018). Incorporating a web-based hydraulic fracturing module in general chemistry as a socio-scientific issue that engages students. Journal of Chemical Education, 95, 553–559.

  • Zowada, C., Frerichs, N., Zuin, V. & Eilks, I. (2019). Developing a lesson plan on conventional and green pesticides in chemistry education – A project of participatory action research, chemistry education research and practice, advance article.

  • Zowada, C., Mönter, L. O., & Eilks, I. (2019a). Geographische Perspektiven in den Naturwissenschaften? [geographical perspectives in the sciences ?]. MNU Journal, 4, 329–334.

  • Zowada, C., Siol, A., Gulacar, O., & Eilks, I. (2019b). Phosphate recovery as a topic for practical and in interdisciplinary chemistry learning. Journal of Chemical Education, 96, 2252–2258.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Zowada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zowada, C., Belova, N. & Eilks, I. Enhancing Education for Sustainable Development Through Geographical Perspectives in Chemistry Teaching. Int J of Sci and Math Educ 19, 87–109 (2021). https://doi.org/10.1007/s10763-019-10043-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10763-019-10043-y

Keywords

Navigation