Abstract
Chemistry, with its related technical applications, is of crucial importance for creating a sustainable future. Without chemistry, current challenges will be difficult to solve. Such problems include meeting most of the Sustainable Development Goals (SDGs) announced by the United Nations and adherence to planetary limits, for example, novel chemical substances being released to the environment, biochemical flows, and climate change. Such challenges can, however, only be solved via transdisciplinary approaches. They can never be fully explored by a single discipline only, either in reality or in the context of teaching and learning. In order to strengthen education for sustainable development (ESD), we suggest including geographical perspectives in science education. Geography commits itself to the analysis of human-environment systems and combines social perspectives with those found in the natural sciences. In our opinion, such an approach can increase the educational value of science learning, e.g. in the case of chemistry education. An exploratory interview study with twelve purposefully selected chemistry teachers was recently conducted in order to explore chemistry teachers’ views on implementing geographical perspectives. This study reveals that German chemistry teachers view such inclusion as generally positive, but also recognize limitations in the approach due to curricular and time constraints.

Similar content being viewed by others
References
Aguirre, J., & Speer, N. M. (2000). Examining the relationship between beliefs and goals in teacher practice. The Journal of Mathematical Behavior, 18, 327–356.
Anastas, P. T., & Warner, C. J. (1998). Green chemistry: Theory and practice. Oxford: Oxford University Press.
Bedehäsing, J., & Padberg, S. (2017). Globale Krise, Große Transformation, Change Agents: Heiße Eisen für die Geographiedidaktik? [Global crisis, transition, change agents: A hot potato for geography educators?]. GW-Unterricht, 146, 19–31.
Bennett, J., Lubben, F., & Hogarth, S. (2007). Bringing science to life: A synthesis of the research evidence on the effects of context-based and STS approaches to science teaching. Science Education, 91, 347–370.
Burmeister, M., Rauch, F., & Eilks, I. (2012). Education for sustainable development (ESD) and chemistry education. Chemistry Education Research and Practice, 13, 59–68.
Bybee, R. (1991). Planet earth in crisis: How should science educators respond? The American Biology Teacher, 53(3), 146–153.
Crutzen, P. J., & Stoermer, E. F. (2000). The “Anthropocene”. IGBP Newsletter, 41, 17.
Czerniak, C. M., & Johnson, C. C. (2014). Interdisciplinary science teaching. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research in science education (Vol. II, pp. 395–411). New York: Routledge.
Czerniak, C. M., Lumpe, A. T., & Haney, J. J. (1999). Science teachers’ beliefs and intentions to implement thematic units. Journal of Science Teacher Education, 10, 123–145.
Edsand, H. E., & Broich, T. (2019). The impact of environmental education on environmental and renewable energy technology awareness: Empirical evidence from Colombia. International Journal of Science and Mathematics Education, 1-24.
Eilks, I. & Hofstein, A. (2014). Combining the question of the relevance of science education with the idea of education for sustainable development. In I.
Eilks, I., & Ralle, B. (2002). Participatory action research in chemical education. In B. Ralle & I. Eilks (Eds.), Research in chemical education – What does it mean? (pp. 87–98). Aachen: Shaker.
Eilks, S. M., & Ralle, B. (Eds.). (n.d.). Science education research and education for sustainable development (pp. 3–14). Aachen: Shaker.
Eilks, I., & Zuin, V. (2018). Special issue "green chemistry in education". Current opinion in green and sustainable chemistry, 13, A4–A6 16 ff.
Ericsson, K. A., Krampe, R. T., & Tesch-Römer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100(3), 363–406.
Gans, P., & Hemmer, I. (Eds.). (2015). Zum Image der Geographie in Deutschland–Ergebnisse einer empirischen Studie [On the image of geography in Germany-Results of an empirical study]. Leipzig: Leibniz-Institut für Länderkunde.
Gebhardt, H., Glaser, R., Radtke, U., & Reuber, P. (2011). Geographie–Physische Geographie und Humangeographie [Geography–Physical geography and humangeography]. Heidelberg: Spektrum.
German Geographical Society (Eds.). (2014). Educational standards in geography for the intermediate school certificate-With sample assignments. vgdh.geographie.de/wp-content/docs/2014/10/geography_education.pdf (20.10.2018).
Grindsted, T. S. (2015). The matter of geography in education for sustainable development: The case of Danish university geography. In W. Leal Filho (Ed.), Transformative approaches to sustainable development at universities (pp. 13–24). Cham: Springer.
Guest, G., MacQueen, K. M., & Namey, E. E. (2012). Applied thematic analysis. Thousand Oaks: SAGE Publications, Inc..
Häsing, P. (2009). Fächerübergreifender Unterricht in der gymnasialen Oberstufe aus Sicht der Lehrender–eine qualitative Studie [Interdisciplinary teaching in upper secondary school from the teachers’point of view-A qualitative study]. University of Kassel, Kassel: Kassel university press.
Hemmer, I., & Hemmer, M. (2017). Teachers’ interests in geography topics and regions–How they differ from students’ interests? Empirical findings. Review of International Geographical Education Online, 7(1) Spring), 9–23.
Hofstein, A., Eilks, I., & Bybee, R. (2011). Societal issues and their importance for contemporary science education – A pedagogical justification and the state-of-the-art in Israel, Germany and the USA. International Journal of Science and Mathematics Education, 9, 1459–1483.
Hopf, C. & Schmidt, C. (1993). Zum Verhältnis von innerfamilialen sozialen Erfahrungen, Persönlichkeitsentwicklung und politischen Orientierungen: Dokumentation und Erörterung des methodischen Vorgehens in einer Studie zu diesem Thema [On the relationship between inner-familial social experiences, personality development and political orientations: Documentation and discussion of the methodological approach in a study on this topic]. Retrieved from www.ssoar.info/ssoar/handle/document/45614 (15.5.2019).
Jegsted, K. M., & Sinnes, A. T. (2015). Chemistry teaching for the future: A model for secondary chemistry education for sustainable development. International Journal of Science Education, 37(4), 655–683.
Joppich, A., & Uhlenwinkel, A. (2017). Fächerübergreifender Unterricht zur Nachhaltigkeit: wissens- oder verhaltensorientiert? [Focusing on knowledge or behaviour?-Cross-disciplinary curriculum-making in the context of education for sustainable development.]. GW-Unterricht, 145(1), 18–27.
Juntunen, M. K., & Aksela, M. K. (2014). Education for sustainable development in chemistry–Challenges, possibilities and pedagogical models in Finland and elsewhere. Chemistry Education Research and Practice, 15, 488–500.
Karpudewan, M., Ismail, Z., & Roth, W. M. (2012). The efficacy of a green chemistry laboratory-based pedagogy: Changes in environmental values of Malaysia pre-service teachers. International Journal of Science and Mathematics Education, 10(3), 497–529.
Kuckartz, U. (2014). Qualitative text analysis. Methods, practice, computer assistance. Thousand Oaks: Sage.
Kuckartz, U. (2018). Qualitative Inhaltsanalyse. Methoden, Praxis, Computerunterstützung [Qualitative text analysis. Methods, practice, computer assistance]. Beltz Juventa: Weinheim.
Kultusminister der Länder in der Bundesrepublik Deutschland (KMK) (2017). Zur Situation und zu Perspektiven für nachhaltige Entwicklung [On the situation and perspectives for sustainable development]. Retrieved from kmk.org/fileadmin/Dateien/veroeffentlichungen_beschluesse/2017/2017_03_17-Bericht-BNE-2017.pdf (01.01.2019).
Labudde, P. (2014). Fächerübergreifender naturwissenschaftlicher Unterricht–Mythen, Definitionen, Fakten [Interdisciplinary science instruction: Myths, definitions, facts]. Zeitschrift für Didaktik der Naturwissenschaften, 20(1), 11–19.
Mahaffy, P. G. (2014). Telling time: Chemistry education in the anthropocene epoch. Journal of Chemical Education, 91, 463–465.
Mahaffy, P. G., Krief, A., Hopf, H., Mehta, G., & Matlin, S. A. (2018). Reorienting chemistry education through systems thinking. Nature Reviews Chemistry, 2(0126), 1–3.
Mamlok-Naaman, R., Eilks, I., Bodner, G., & Hofstein, A. (2018). Professional development of chemistry teachers. Cambridge: Royal Society of Chemistry.
Matlin, S. A., Mehta, G., Hopf, H., & Krief, A. (2015). The role of chemistry in inventing a sustainable future. Nature Chemistry, 7, 941–943.
Mazúr, E., & Urbánek, J. (1983). Space in geography. GeoJournal, 7(2), 139–143.
Meadows, D. H., Meadows, D. L., Randers, J., & Behrens, W. W. (1972). The limits to growth. New York: Universe Books.
Mönter, L. O. (2018). Building bridges with geography towards transformative education-The example “Climate Changes Cities”. In I. Eilks, S. Markic, & B. Ralle (Eds.), Building bridges across disciplines for transformative education and a sustainable future (pp. 141–152). Aachen: Shaker.
Otto, K.-H. (2015). Geographie und Scientific Literacy–Der Beitrag der Geographie zur naturwissenschaftlichen (Grund-) Bildung [Geography and scientific literacy-The contribution of geography to science (primary) Bildung]. In K.-H. Otto (Ed.), Geographie und naturwissenschaftliche Bildung (pp. 1–22). Bochum: HGD-Symposium.
Patton, M. Q. (1990). Qualitative sampling and research methods. London: Sage.
Rempfler, A., & Uphues, R. (2012). System competence in geography education development of competence models, diagnosis pupils’ achievement. European Journal of Geography, 3(1), 6–22.
Sadler, T. D. (2011). Socio-scientific issues in the classroom. Dordrecht: Springer.
Simonneaux, J., & Simonneaux, J. (2012). Educational configurations for teaching environmental socioscientific issues within the perspective. Research in Science Education, 42, 75–94.
Sjöström, J. (2013). Towards Bildung-oriented science education. Science Education, 22, 1873–1890.
Sjöström, J., Eilks, I., & Zuin, V. G. (2016). Towards eco-reflexive science education - a critical reflection about educational implications of green chemistry. Science & Education, 25, 321–341.
Stables, A., & Scott, W. A. H. (2002). The quest for holism in education for sustainable development. Environmental Education Research, 8(1), 53–60.
Steffen, W., Richardson, K., Rockström, J., Cornell, S. E., Fetzer, I., Bennett, I. M., Biggs, R., Carpenter, S. R., de Vries, W., de Wit, C. A., Folke, C., Gerten, D., Heinke, J., Mace, G. M., Persson, L. M., Ramanathan, V., Reyers, B., & Sörlin, S. (2015a). Planetary boundaries: Guiding human development on a changing planet. Science, 347(6223), 736–747.
Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O., & Ludwig, C. (2015b). The trajectory of the Anthropocene: The great acceleration. The Anthropocene Review, 2(1), 81–98.
Stolz, M., Witteck, T., Marks, R., & Eilks, I. (2013). Reflecting socio-scientific issues for science education coming from the case of curriculum development on doping in chemistry education. Eurasia Journal of Mathematics, Science and Technology Education, 9, 361–370.
Stuckey, M., Hofstein, A., Mamlok-Naaman, R., & Eilks, I. (2013). The meaning of ‘relevance’ in science education and its implications for the science curriculum. Studies in Science Education, 49, 1–34.
Stübig, F., Ludwig, P. H., Bosse, D., Gessner, E., & Lorberg, F. (2006). Bestandsaufnahme zur Praxis fächerübergreifenden Unterrichts in der gymnasialen Oberstufe im Bundesland Hessen [Inventory of the practice of interdisciplinary teaching in upper secondary education in the state of Hesse]. Kassel: Kassel university press.
Swanborn, P. G. (1996). A common base for quality control criteria in quantitative and qualitative research. Quality & Quantity, 30(1), 19–35.
Tytler, R. (2012). Socio-scientific issues, sustainability and science education. Research in Science Education, 42, 155–163.
Uitto, A., & Saloranta, S. (2017). Subject teachers as educators for sustainability: A survey study. Education in Science, 7(8), 1–19.
United Nations (UN). (2015). Transforming our world: The 2030 agenda for sustainable development. New York: UN.
United Nations Environment Programme (UNEP) (2019). Global Chemicals Outlook II. https://www.unenvironment.org/explore-topics/chemicals-waste/what-wedo/policy-and-governance/global-chemicals-outlook (01.06.2019).
Van der Heijden, H. R. M. A., Geldens, J. J. M., Beijaard, D., & Popeijus, H. L. (2015). Characteristics of teachers as change agents. Teachers and Teaching, 21(6), 681–699.
Verloop, N., van Driel, J., & Meijer, P. (2001). Teacher knowledge and the knowledge base of teaching. International Journal of Educational Research, 35, 441–461.
Vilches, A., & Gil-Pérez, D. (2013). Creating a sustainable future: Some philosophical and educational considerations for chemistry teaching. Science & Education, 22, 1857–1872.
Weichhart, P. (2003). Physische Geographie und Humangeographie–eine schwierige Beziehung: Skeptische Anmerkungen zu einer Grundfrage der Geographie und zum Münchner Projekt einer “Integrativen Umweltwissenschaft” [Physical geography and human geography-A difficult relationship: skeptical remarks on a fundamental question of geography and the Munich project of an “Integrative Environmental Science”]. In Heinritz, G. (Eds.), “Integrative Ansätze in der Geographie–Vorbild oder Trugbild?” Münchner Symposium zur Zukunft der Geographie (pp. 17–34). 28. Eine Dokumentation. Passau.
World Commission on Environment and Development (WCED) (1987). Our common future. Retrieved from www.un-documents.net/wced-ocf.htm (01.06.2019).
Zeidler, D. L. (2015). Socioscientific issues. In R. Gunstone (Ed.), Encyclopedia of science education (pp. 998–1003). Berlin: Springer Science+Business Media.
Zowada, C., Gulacar, O., & Eilks, I. (2018). Incorporating a web-based hydraulic fracturing module in general chemistry as a socio-scientific issue that engages students. Journal of Chemical Education, 95, 553–559.
Zowada, C., Frerichs, N., Zuin, V. & Eilks, I. (2019). Developing a lesson plan on conventional and green pesticides in chemistry education – A project of participatory action research, chemistry education research and practice, advance article.
Zowada, C., Mönter, L. O., & Eilks, I. (2019a). Geographische Perspektiven in den Naturwissenschaften? [geographical perspectives in the sciences ?]. MNU Journal, 4, 329–334.
Zowada, C., Siol, A., Gulacar, O., & Eilks, I. (2019b). Phosphate recovery as a topic for practical and in interdisciplinary chemistry learning. Journal of Chemical Education, 96, 2252–2258.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zowada, C., Belova, N. & Eilks, I. Enhancing Education for Sustainable Development Through Geographical Perspectives in Chemistry Teaching. Int J of Sci and Math Educ 19, 87–109 (2021). https://doi.org/10.1007/s10763-019-10043-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10763-019-10043-y