Analysis of the Meanings of the Antiderivative Used by Students of the First Engineering Courses

  • Luis R. Pino-Fan
  • Vicenç Font
  • Wilson Gordillo
  • Víctor Larios
  • Adriana Breda
Article

Abstract

In this article, we present the results of the administration of a questionnaire designed to evaluate the understanding that civil engineering students have of the antiderivative. The questionnaire was simultaneously administered to samples of Mexican and Colombian students. For the analysis of the answers, we used some theoretical and methodological notions provided by the theoretical model known as Onto-Semiotic Approach (OSA) to mathematical cognition and instruction. The results revealed the meanings of the antiderivative that are more predominantly used by civil engineering students. Also, the comparison between the mathematical activity of Mexican and Colombian students provides information that allows concluding that the meanings mobilized could be shared among their communities and are not particular of their classroom or university.

Keywords

Antiderivative Calculus Engineering students Understanding 

Notes

Acknowledgements

This study has been performed in the framework of research projects FONDECYT Nº 11150014 (Funded by CONICYT, Chile), and EDU2015-64646-P (MINECO/FEDER, UE).

Supplementary material

10763_2017_9826_MOESM1_ESM.docx (193 kb)
ESM 1(DOCX 193 kb)

References

  1. Arcos, J. (2004). Rigor o entendimiento, un viejo dilema en la enseñanza de las matemáticas: el caso del cálculo infinitesimal [Rigor or understanding, an old dilemma in the teaching of mathematics: The case of infinitesimal calculus]. Tiempo de Educar, 5(10), 77–110.Google Scholar
  2. Arcos, J., & Sepúlveda, A. (2014). Desarrollo conceptual del cálculo. Desarrollo histórico de los conceptos del cálculo. Una perspectiva docente [Conceptual development of the calculation. Historical development of the concepts of calculation. A teaching perspective]. Toluca, México: Universidad Autónoma del Estado de México.Google Scholar
  3. Artigue, M., Batanero, C., & Kent, P. (2007). Mathematics thinking and learning at post-secondary level. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 1011–1049). Charlotte, N. C: NCTM and IAP.Google Scholar
  4. Bingolbali, E., Monaghan, J., & Roper, T. (2007). Engineering students’ conceptions of the derivative and some implications for their mathematical education. International Journal of Mathematical Education in Science and Technology, 38(6), 763–777. doi:10.1080/00207390701453579.CrossRefGoogle Scholar
  5. Borasi, R. (1992). Learning mathematics through inquiry. Portsmouth, NH: Heinemann.Google Scholar
  6. Cohen, L., Manion, L., & Morrison, K. (2011). Research methods in education. London and New York: Routledge.Google Scholar
  7. Contreras, A., Ordóñez, L., & Wilhelmi, M. (2010). Influencia de las pruebas de acceso a la universidad en la enseñanza de la integral definida en el Bachillerato [Influence of the tests of access to the university in the education of the integral defined in the Bachillerato]. Enseñanza de las Ciencias, 28(3), 367-384.Google Scholar
  8. Crisóstomo, E. (2012). Idoneidad de procesos de estudio del cálculo integral en la formación de profesores de matemáticas: una aproximación desde la investigación en didáctica del cálculo y el conocimiento professional [Appropriateness of processes of study of integral calculus in the training of teachers of mathematics: An approach from the research in didactics of calculation and professional knowledge] (Doctoral dissertation). Spain: Universidad de Granada.Google Scholar
  9. Font, V., Godino, J. D., & Gallardo, J. (2013). The emergence of objects from mathematical practices. Educational Studies in Mathematics, 82(1), 97-124. doi:10.1007/s10649-012-9411-0
  10. Gnedenko, B. V., & Khalil, Z. (1979). The mathematical education of engineers. Educational Studies in Mathematics, 10(1), 71–83. doi:10.1007/BF00311176.CrossRefGoogle Scholar
  11. Godino, J. D., & Batanero, C. (1994). Significado institucional y personal de los objetos matemáticos [Institutional and personal meaning of mathematical objects]. Recherches en Didactique des Mathématiques, 14(3), 325-355.Google Scholar
  12. Godino, J. D., Batanero, C., & Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM. The International Journal on Mathematics Education, 39(1), 127-135.Google Scholar
  13. Gordillo, W. (2015). Análisis de la comprensión sobre la noción antiderivada de estudiantes universitarios [Analysis of the understanding on the antiderivative notion of university students] (Unpublished doctoral dissertation). Chile: Universidad de Los Lagos.Google Scholar
  14. Gordillo, W., & Pino-Fan, L. (2016). Una propuesta de reconstrucción del significado holístico de la antiderivada [A proposal for reconstruction of the holistic meaning of the antiderivative]. BOLEMA, 30(55), 535-558. doi:10.1590/1980-4415v30n55a12
  15. Gordillo, W., Pino-Fan, L., Font, V., & Ponce-Campuzano, J. (2015). Diseño de un cuestionario para evaluar la comprensión sobre el objeto matemático antiderivada [Design of a questionnaire to assess the understanding on mathematical object antiderivative]. Manuscript submitted for publication.Google Scholar
  16. Hall, W. L. (2010). Student misconceptions of the language of calculus: Definite and indefinite integrals. Paper presented at the 13th Annual Conference on Research in Undergraduate Mathematics Education, Raleigh, North Carolina.Google Scholar
  17. Hieb, J. L., Lyle, K. B., Ralston, P., & Chariker, J. (2015). Predicting performance in a first engineering calculus course: Implications for interventions. International Journal of Mathematical Education in Science and Technology, 46(1), 40–55. doi:10.1080/0020739X.2014.936976.CrossRefGoogle Scholar
  18. Jones, S. R. (2013). Understanding the integral: Students’ symbolic forms. The Journal of Mathematical Behavior, 32(2), 122–141. doi:10.1016/j.jmathb.2012.12.004.CrossRefGoogle Scholar
  19. Jones, S. R. (2015). Areas, anti-derivatives, and adding up pieces: Definite integrals in pure mathematics and applied science contexts. The Journal of Mathematical Behavior, 38, 9–28. doi:10.1016/j.jmathb.2015.01.001.CrossRefGoogle Scholar
  20. Kiat, S. E. (2005). Analysis of students’ difficulties in solving integration problems. The Mathematics Educator, 9(1), 39–59.Google Scholar
  21. Kouropatov, A., & Dreyfus, T. (2014). Learning the integral concept by constructing knowledge about accumulation. ZDM Mathematics Education, 46(4), 533–548. doi:10.1007/s11858-014-0571-5.CrossRefGoogle Scholar
  22. Maull, W., & Berry, J. S. (2000). A questionnaire to elicit the mathematical concept images of engineering students. International Journal of Mathematical Education in Science and Technology, 31(6), 889–917. doi:10.1080/00207390050203388.CrossRefGoogle Scholar
  23. Metaxas, N. (2007). Difficulties on understanding the indefinite integral. In J. H. Woo, H. C. Lew, K. S. Park, & D. Y. Seo (Eds.), Proceedings of the 31st Conference of the International Group for the Psychology of mathematics education (Vol. 3, pp. 265–272). Seoul, Korea: PME.Google Scholar
  24. Neubert, J., Khavanin, M., Worley, D., & Kaabouch, N. (2014). Minimizing the institutional change required to augment calculus with real-world engineering problems. PRIMUS: Problems, Resources, and Issues in Mathematics Undergraduate Studies, 24(4), 319–334. doi:10.1080/10511970.2013.879970.CrossRefGoogle Scholar
  25. Pino-Fan, L. (2014). Evaluación de la faceta epistémica del conocimiento didáctico-matemático de futuros profesores de bachillerato sobre la derivada [Assessment of epistemic facet of the High-school prospective teachers' didactic-mathematical knowledge on derivative]. Granada, Spain: Universidad de Granada.Google Scholar
  26. Pino-Fan, L., Godino, J. D., & Font, V. (2016). Assessing key epistemic features of didactic-mathematical knowledge of prospective teachers: The case of the derivative. Journal of Mathematical Teacher Education. Advance online publication. doi:10.1007/s10857-016-9349-8.
  27. Ponce-Campuzano, J. C., & Rivera-Figueroa, A. (2011). Unexpected results using computer algebraic systems for computing antiderivates. Far East Journal of Mathematical Education, 7(1), 57–80.Google Scholar
  28. Posso, A., Uzuriaga, V. L., & Martinez A. (2011). Some reflections on the teaching of integration methods. Paper presented at the XIII Interamerican Conference on Mathematics Education (CIAEM-IACME), Recife, Brasil.Google Scholar
  29. Randahl, M. (2012). First-year engineering students’ use of their mathematics textbook – Opportunities and constraints. Mathematics Education Research Journal, 24(3), 239–256. doi:10.1007/s13394-012-0040-9.CrossRefGoogle Scholar
  30. Sealey, V. (2006). Definite integrals, riemann sums, and area under a curve: What is necessary and sufficient? In S. Alatorre, J. L. Cortina, M. Sáiz, & A. Méndez (Eds.), Proceedings of the 28th annual meeting of the north American chapter of the International Group for the Psychology of mathematics education (Vol. 2, pp. 46–53). Mérida, México: Universidad Pedagógica Nacional.Google Scholar
  31. Sealey, V. (2014). A framework for characterizing student understanding of Riemann sums and definite integrals. The Journal of Mathematical Behavior, 33, 230–245. doi:10.1016/j.jmathb.2013.12.002.CrossRefGoogle Scholar
  32. Sonnert, G., & Sadler, P. M. (2014). The impact of taking a college pre-calculus course on students’ college calculus performance. International Journal of Mathematical Education in Science and Technology, 45(8), 1188–1207. doi:10.1080/0020739X.2014.920532.CrossRefGoogle Scholar
  33. Swidan, O., & Yerushalmy, M. (2014). Learning the indefinite integral in a dynamic and interactive technological environment. ZDM Mathematics Education, 46(4), 517–531. doi:10.1007/s11858-014-0583-1.CrossRefGoogle Scholar
  34. Wagner, J. F. (2015). What the integral does: Physics students’ efforts at making sense of integration. In A. D. Churukian, D. L. Jones, & L. Ding (Eds.), 2015 Physics education research Conference Proceedings (pp. 355-358). College Park, MD.Google Scholar

Copyright information

© Ministry of Science and Technology, Taiwan 2017

Authors and Affiliations

  • Luis R. Pino-Fan
    • 1
  • Vicenç Font
    • 2
  • Wilson Gordillo
    • 3
  • Víctor Larios
    • 4
  • Adriana Breda
    • 5
  1. 1.Department of Exact Sciences. Post Graduate Program in Mathematics EducationUniversidad de Los LagosOsornoChile
  2. 2.Universitat de BarcelonaBarcelonaSpain
  3. 3.Universidad Distrital Francisco José de CaldasBogotáColombia
  4. 4.Universidad Autónoma de QuerétaroSantiago de QuerétaroMexico
  5. 5.Universidad de Los LagosOsornoChile

Personalised recommendations