Skip to main content
Log in

Impact of Secondary Students’ Content Knowledge on Their Communication Skills in Science

  • Published:
International Journal of Science and Mathematics Education Aims and scope Submit manuscript

Abstract

The expert blind spot (EBS) hypothesis implies that even some experts with a high content knowledge might have problems in science communication because they are using the structure of the content rather than their addressee’s prerequisites as an orientation. But is that also true for students? Explaining science to peers is a crucial part of cooperative learning methods such as the “jigsaw method”. Our study examined the relationship between science communication competence (SCC) and content knowledge (CK) of 10th-grade students (N = 213). Using latent class analysis, we identified two types of students with a different relationship between CK and SCC. Using path analysis, we found that the first type of 109 students primarily used their science CK as the “resource” for addressee-oriented science communication and both their SCC and their CK were correlated with each other. For the second type of 104 students (who used other resources), their CK even had a small negative effect on their SCC. Using t tests, we found that those students primarily using their CK as the resource for communication performed significantly worse in the communication test than did those students who used other resources. Using the EBS hypothesis, we suggest that students’ CK might have ambiguous effects in communication if the content structure—rather than their addressee’s prior knowledge—is used as the primary orientation for communication. We suggest that an effective use of cooperative learning techniques in classroom requires a special prior training for their science communication skills.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aikenhead, G. (2001). Science communication: A cross cultural event. In S. Stocklmayer, M. Gore & C. Bryant (Eds.), Science communication in theory and practice (pp. 23–46). Dordrecht, The Netherlands: Kluwer.

    Chapter  Google Scholar 

  • Berger, R. & Hänze, M. (2015). Impact of expert teaching quality on novice academic performance in the jigsaw cooperative learning method. International Journal of Science Education, 37(2), 294–320.

    Article  Google Scholar 

  • Berland, L. K. & McNeill, K. L. (2012). For whom is argument and explanation a necessary distinction? A response to Osborne and Patterson. Science Education, 96(5), 808–813.

    Article  Google Scholar 

  • Berland, L. K. & Reiser, B. J. (2009). Making sense of argumentation and explanation. Science Education, 93(1), 26–55.

    Article  Google Scholar 

  • Bernholt, S. (2010). Kompetenzmodellierung in der Chemie - Theoretische und empirische Reflexion am Beispiel des Modells hierarchischer Komplexität [Modelling competencies in chemistry—theoretical and empirical considerations referring to the model of hierarchical complexity]. Berlin, Germany: Logos.

  • Bernholt, S., Eggert, S. & Kulgemeyer, C. (2012). Capturing the diversity of students’ competences in science classrooms: Differences and commonalities of three complementary approaches. In S. Bernholt, K. Neumann & P. Nentwig (Eds.), Making it tangible: learning outcomes in science education (pp. 173–201). Münster, Germany: Waxmann.

  • Bond, T. & Fox, C. (2001). Applying the Rasch model. Fundamental measurement in the human sciences. London, United Kingdom: Lawrence Erlbaum Associates.

    Google Scholar 

  • Bricker, L. & Bell, P. (2008). Conceptualizations of argumentation from learning science studies and the learning sciences and their implications for the practices of science education. Science Education, 92, 437–498.

    Article  Google Scholar 

  • Bromme, R., Rambow, R. & Nückles, M. (2001). Expertise and estimating what other people know: The influence of professional experience and type of knowledge. Journal of Experimental Psychology: Applied, 7, 317–330.

    Google Scholar 

  • Bucchi, M., & Trench, B. (Eds.) (2008). Handbook of public communication of science and technology. Abingdon, United Kingdom: Routledge.

  • Bühner, M. (2004). Einführung in die Test- und Fragebogenkonstruktion [Test development: an introduction]. München, Germany: Pearson.

  • Chi, M. T. H., Siler, S. & Jeong, H. (2004). Can tutors monitor students’ understanding accurately? Cognition and Instruction, 22, 363–387.

    Article  Google Scholar 

  • Chi, M. T. H., Siler, S. A., Jeong, H., Yamauchi, T. & Hausmann, R. G. (2001). Learning from human tutoring. Cognitive Science, 25, 471–533.

    Article  Google Scholar 

  • Clark, H. (1996). Using language. Cambridge, United Kingdom: Cambridge University Press.

    Book  Google Scholar 

  • Clark, L. A. & Watson, D. (1995). Constructing validity: Basic issues in objective scale development. Psychological Assessment, 7(3), 309–319.

    Article  Google Scholar 

  • Davier, M. V. (2000). WINMIRA—A program system for analyses with the Rasch model, with the latent class analysis and with the mixed Rasch model. Kiel, Germany: IPN.

    Google Scholar 

  • Davis, M. (1980). A multidimensional approach to individual differences in empathy. Catalogue of Selected Documents in Psychology, 10, 85–104.

    Google Scholar 

  • Driver, R., Newton, P. & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287–312.

    Article  Google Scholar 

  • Edmonston, J., Dawson, V. & Schibeci, R. (2010). Undergraduate biotechnology students’ view of science communication. International Journal of Science Education, 32(18), 2451–2474.

    Article  Google Scholar 

  • Eggert, S. & Bögeholz, S. (2006). Göttinger Modell der Bewertungskompetenz - Teilkompetenz Bewerten, Entscheiden und Reflektieren für Gestaltungsaufgaben Nachhaltiger Entwicklung [The Göttingen model of judging competence—sub-competence judging, deciding and reflecting for tasks in sustainable development]. Zeitschrift für Didaktik der Naturwissenschaften, 12, 177–197.

    Google Scholar 

  • Einhaus, E. (2007). Schülerkompetenzen im Bereich Wärmelehre. Entwicklung eines Testinstruments zur Überprüfung und Weiterentwicklung eines normativen Modells fachbezogener Kompetenzen [Student’s competences in thermodynamics. Developing a test and a refining a normative model of domain-specific competences]. Berlin, Germany: Logos.

  • Erduran, S., Simon, S. & Osborne, J. (2004). Tapping into argumentation: Developments in the application of Toulmin’s Argument Pattern for studying science discourse. Science Education, 88(6), 915–933.

    Article  Google Scholar 

  • Geelan, D. (2012). Teacher explanations. In B. Fraser, K. Tobin & C. McRobbie (Eds.), Second international handbook of science education (pp. 987–999). Dordrecht, The Netherlands: Springer.

    Chapter  Google Scholar 

  • Gollwitzer, M. (2007). Latent-class-analysis. In H. Moosbrugger & A. Kelava (Eds.), Testtheorie und Fragebogenkonstruktion (pp. 280–306). Berlin, Germany: Springer.

    Google Scholar 

  • Gonzales, L. & Carter, K. (1996). Correspondence in cooperating teachers’ and student teachers’ interpretations of classroom events. Teaching and Teacher Education, 12, 39–47.

    Article  Google Scholar 

  • Hänze, M. & Berger, R. (2007). Kooperatives Lernen im Gruppenpuzzle und im Lernzirkel [Cooperative learning with the jigsaw method]. Unterrichtswissenschaft, 35(3), 227–240.

    Google Scholar 

  • Hartings, M. & Fahy, D. (2011). Communicating chemistry for public engagement. Nature Chemistry, 3, 674–677.

    Article  Google Scholar 

  • Heller, K. & Perleth, C. (2000). KFT 4-12+R - Kognitiver Fähigkeiten Test für 4. bis 12 [The Cognitive Abilities Test for grades 4 to 12]. Klassen. Göttingen, Germany: Beltz.

    Google Scholar 

  • Hinds, P. J. (1999). The curse of expertise: The effects of expertise and debiasing methods on predictions of novice performance. Journal of Experimental Psychology: Applied, 5, 205–221.

    Google Scholar 

  • Jiménez-Aleixandre, M. & Erduran, S. (2007). Argumentation in science education: An overview. In S. Erduran & M. Jiménez-Aleixandre (Eds.), Argumentation in science education (pp. 3–27). Heidelberg, Germany: Springer.

    Chapter  Google Scholar 

  • Jiménez-Aleixandre, M., Rodríguez, A. & Duschl, R. (2000). “Doing the lesson” or “doing science”: Argument in high school genetics. Science Education, 81(11), 533–559.

    Google Scholar 

  • Kattman, U., Duit, R., Gropengießer, H. & Komorek, M. (1997). Das Modell der Didaktischen Rekonstruktion. Ein Rahmen für naturwissenschaftsdidaktische Forschung und Entwicklung [The model of educational reconstruction: A framework for science education research and development]. Zeitschrift für Didaktik der Naturwissenschaften, 3(3), 3–18.

    Google Scholar 

  • Kobow, I. (2015). Entwicklung und Validierung eines Testinstrumentes zur Erfassung der Kommunikationskompetenz im Fach Chemie [Developing and validating a test inventory for communication competence in chemistry]. Berlin, Germany: Logos.

  • Kulgemeyer, C. (2010). Physikalische Kommunikationskompetenz. Modellierung und Diagnostik [Modelling and measuring science communication competence]. Berlin, Germany: Logos.

  • Kulgemeyer, C. (2015). Science communication competence test: Test booklet and solutions. Breman, Germany: University of Bremen. doi:10.13140/RG.2.1.3626.9605.

  • Kulgemeyer, C. & Schecker, H. (2009). Kommunikationskompetenz in der Physik: Zur Entwicklung eines domänenspezifischen Kompetenzbegriffs [Science communication competence: Developing a domain-specific concept of competence]. Zeitschrift für Didaktik der Naturwissenschaften, 15, 131–153.

  • Kulgemeyer, C. & Schecker, H. (2012). Physikalische Kommunikationskompetenz - Empirische Validierung eines normativen Modells [Science communication competence - empirical validation of a noramtive model]. Zeitschrift für Didaktik der Naturwissenschaften, 18, 29–54.

  • Kulgemeyer, C. & Schecker, H. (2013). Students explaining science – Assessment of science communication competence. Research in Science Education, 43, 2235–2256.

  • Kulgemeyer, C. & Schecker, H. (2014). Research on Educational Standards in German Science Education – Towards a model of students’ competences. EURASIA Journal of Mathematics, Science & Technology Education, 10(4), 365–369.

  • Krauss, S., Brunner, M. & Kunter, M. (2008a). Pedagogical content knowledge and content knowledge of secondary mathematics teachers. Journal of Educational Psychology, 100(3), 716–725.

    Article  Google Scholar 

  • Krauss, S., Neubrand, M., Blum, W., Baumert, J., Brunner, M., Kunter, M., … Köwen, K. (2008a). Die Untersuchung des professionellen Wissens deutscher Mathematik-Lehrerinnen und -Lehrer im Rahmen der COACTIV-Studie [Researching Professional Knowledge of German Math Teachers in COACTIV]. Journal für Mathematik-Didaktik, 29(3/4), 223–258.

  • McNeill, K. & Krajcik, J. (2007). Inquiry and scientific explanations: helping students use evidence and reasoning. In J. Luft, R. Bell & J. Gess-Newsome (Eds.), Science as an inquiry in the secondary setting (pp. 121–134). Arlington, TX: NSTA.

    Google Scholar 

  • Nathan, M. & Koedinger, K. (2000). An investigation of teachers’ beliefs of students’ algebra development. Cognition and Instruction, 18(2), 209–237.

    Article  Google Scholar 

  • Nathan, M. & Petrosino, A. (2003). Expert blind spot among preservice teachers. American Educational Research Journal, 40(4), 905–928.

    Article  Google Scholar 

  • Osborne, J., Erduran, S. & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994–1020.

    Article  Google Scholar 

  • Osborne, J. F. & Patterson, A. (2011). Scientific argument and explanation: A necessary distinction? Science Education, 95(4), 627–638.

    Article  Google Scholar 

  • Renkl, A., Wittwer, J. & Große, C. (2006). Instruktionale Erklärungen beim Erwerb kognitiver Fertigkeiten: sechs Thesen zu einer oft vergeblichen Bemühung [Instructional explanations and achievement: Six assumptions about a too often futile effort]. In I. Hosenfeld (Hrsg.): Schulische Leistung. Grundlagen, Bedingungen, Perspektiven [School achievement. basics, conditions and perspectives], (pp. 205–223). Münster, Germany: Waxmann.

  • Rincke, K. (2011). It’s rather like learning a language: Development of talk and conceptual understanding in mechanics lessons. International Journal of Science Education, 33(2), 229–258.

    Article  Google Scholar 

  • Rosseel, Y. (2015). The lavaan tutorial. Department of data analysis. Ghent, Belgium: Ghent University.

    Google Scholar 

  • Schempp, P., Manross, D., Tan, S. & Fincher, M. (1998). Subject expertise and teacher’s knowledge. Journal of Teaching in Physics Education, 17, 342–356.

    Article  Google Scholar 

  • Schmidt, M. (2008). Kompetenzmodellierung und -diagnostik im Themengebiet Energie der Sekundarstufe I. Entwicklung und Erprobung eines Testinventars [Competence modeling in energy. Developing a test]. Berlin, Germany: Logos.

    Google Scholar 

  • Shulman, L. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Education Review, 57(1), 1–22.

    Article  Google Scholar 

  • Spektor-Levy, O., Eylon, B.-S. & Scherz, Z. (2009). Teaching scientific communication skills in science studies: Does it make a difference? International Journal of Science and Mathematics Education, 7(5), 875–903.

    Article  Google Scholar 

  • Toulmin, S. (1958). The uses of argument. Cambridge, United Kingdom: Cambridge University Press.

    Google Scholar 

  • Treagust, D. & Harrison, A. (1999). The genesis of effective science explanations for the classroom. In J. Loughran (Ed.), Researching teaching: Methodologies and practices for understanding pedagogy (pp. 28–43). Abingdon, United Kingdom: Routledge.

    Google Scholar 

  • Vinzi, V. E., Trinchera, L. & Amato, S. (2010). PLS path modeling: From foundations to recent developments and open issues for model assessment and improvement. In V. E. Vinzi, W. Chin, J. Henseler & H. Wang (Eds.), Handbook of partial least squares (pp. 47–82). Berlin, Germany: Springer.

    Chapter  Google Scholar 

  • Wellnitz, N., Fischer, H., Kauertz, A., Mayer, J., Neumann, I., Pant, H. A.,…Walpuski, M. (2012). Evaluation der Bildungsstandards - eine fächerübergreifende Testkonzeption für den Kompetenzbereich Erkenntnisgewinnung [Evaluation of educational standards—A cross-domain approach for scientific methods]. Zeitschrift für Didaktik der Naturwissenschaften, 18, 261–291.

  • Whittington, C., Pellock, S., Connungham, R. & Cox, J. (2014). Combining content and elements of communication into an upper-level biochemistry course. Biochemistry and Molecular Biology Education, 42(2), 136–141.

    Article  Google Scholar 

  • Wittwer, J., Nückles, M., Landmann, N. & Renkl, A. (2010). Can tutors be supported in giving effective explanations? Journal of Educational Psychology, 102(1), 74–89.

    Article  Google Scholar 

  • Wittwer, J. & Renkl, A. (2008). Why instructional explanations often do not work: A framework for understanding the effectiveness of instructional explanations. Educational Psychologist, 43(1), 49–64.

    Article  Google Scholar 

  • Wittwer, J. & Renkl, A. (2010). How effective are instructional explanations in example-based learning? A meta-analytic review. Educational Psychology Review, 22, 393–409.

    Article  Google Scholar 

  • Zohar, A. & Nemet, F. (2002). Fostering students’ knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39(1), 35–62.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Kulgemeyer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulgemeyer, C. Impact of Secondary Students’ Content Knowledge on Their Communication Skills in Science. Int J of Sci and Math Educ 16, 89–108 (2018). https://doi.org/10.1007/s10763-016-9762-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10763-016-9762-6

Keywords

Navigation