The Effect of Metacognitive Scaffolds on Low Achievers’ Laboratory Learning

  • Sufen ChenEmail author
  • Chih-Chi Huang
  • Te-Lien Chou


This study explored the influence of experimental goal setting and planning on the attitudes toward science, self-efficacy, inquiry performance, and achievement of students with low academic performance. A total of 71 students aged 16–18 were randomly divided into a treatment group (with goal setting and planning) and a control group (without goal setting and planning). A microcomputer-based laboratory focused on Boyle’s Law, coupled with an inquiry worksheet, was assigned. Based on Winne and Hadwin’s model of self-regulated learning, scaffolding was offered to the treatment group to promote goal setting and planning. Data were collected from the worksheet, the Attitudes toward Science Scale, the Self-efficacy of Scientific Inquiry scale, and the Boyle’s Law Conceptual Test. The results showed that both the treatment and control groups improved significantly from the pre- to post-conceptual tests. In the treatment group, the male students gained significantly more conceptual knowledge than the female students. Regarding attitudes toward science, the male students’ scores on the post-test were higher than those of the females. It is concluded that the male students were more positive regarding goal setting and planning in the inquiry activity, whereas the female students did not benefit as much.


Attitudes toward science Gender difference Microcomputer-based laboratory Scientific inquiry Self-regulated learning 


  1. Abell, S. K. & Lederman, N. G. (2007). Handbook of research on science education. New York, NY: Routledge.Google Scholar
  2. Bandura, A. (1997). Self-efficacy: The exercise of control. New York, NY: W. H. Freeman and Company.Google Scholar
  3. Blonder, R., Rap, S., Mamlok-Naaman, R. & Hofstein, A. (2015). Questioning behavior of students in the inquiry chemistry laboratory: Differences between sectors and genders in the Israeli context. International Journal of Science and Mathematics Education, 13, 705–732.CrossRefGoogle Scholar
  4. Boekaerts, M., Pintrich, P. R. & Zeidner, M. (2000). Handbook of self-regulation. New York, NY: Academic.Google Scholar
  5. Buccheri, G., Gürber, N. A. & Brühwiler, C. (2011). The impact of gender on interest in science topics and the choice of scientific and technical vocations. International Journal of Science Education, 33(1), 159–178.CrossRefGoogle Scholar
  6. Burkam, D. T., Lee, V. E. & Smerdon, B. A. (1997). Gender and science learning early in high school: Subject matter and laboratory experiences. American Educational Research Journal, 34, 297–331.CrossRefGoogle Scholar
  7. Bybee, R. & McCrae, B. (2011). Scientific literacy and student attitudes: Perspectives from PISA 2006 science. International Journal of Science Education, 33(1), 7–26.CrossRefGoogle Scholar
  8. Cavallo, A. M. L., Potter, W. H. & Rozman, M. (2004). Gender differences in learning constructs, shifts in learning constructs, and their relationship to course achievement in a structured inquiry, yearlong college physics course for life science majors. School Science and Mathematics, 104(6), 288–300.CrossRefGoogle Scholar
  9. Chen, S., Chang, W. H., Lai, C. H. & Tsai, C. Y. (2014). A comparison of students’ approaches to inquiry, conceptual learning, and attitudes in simulation-based and microcomputer-based laboratories. Science Education, 98, 905--935.Google Scholar
  10. Chien, K. P., Tsai, C.Y., Chen, H. L., Chang, W. H. & Chen, S. (2015). Learning differences and eye fixation patterns in virtual and physical science laboratories. Computers & Education82, 191--201.Google Scholar
  11. DiBenedetto, M. K. & Zimmerman, B. J. (2010). Differences in self-regulatory processes among students studying science: A microanalytic investigation. The International Journal of Educational and Psychological Assessment, 5, 2–24.Google Scholar
  12. Fraser, B. J., Tobin, K. G. & McRobbie, C. J. (2012). Second international handbook of science education (Vol. 1). New York, NY: Springer.Google Scholar
  13. Freedman, M. P. (2002). The influence of laboratory instruction on science achievement and attitude toward science across gender differences. Journal of Women and Minorities in Science and Engineering, 8, 191–200.CrossRefGoogle Scholar
  14. Gogolin, L. & Swartz, F. (1992). A quantitative and qualitative inquiry into the attitudes toward science of non science college students. Journal of Research in Science Teaching, 29, 487–504.CrossRefGoogle Scholar
  15. Greene, B. A. (2015). Measuring cognitive engagement with self-report scales: Reflections from over 20 years of research. Educational Psychologist, 50(1), 1–13.CrossRefGoogle Scholar
  16. Greene, J. A. & Azevedo, R. (2007). A theoretical review of Winne and Hadwin's model of self-regulated learning: New perspectives and directions. Review of Educational Research, 77(3), 334–372.CrossRefGoogle Scholar
  17. Greenfield, T. A. (1997). Gender- and grade-level differences in science interest and participation. Science Education, 81, 259–276.CrossRefGoogle Scholar
  18. Hannover, B. & Kessels, U. (2011). Are boys left behind at school? Reviewing and explaining education-related gender disparities. Zeitschrift Fur Padagogische Psychologie, 25(2), 89–103.CrossRefGoogle Scholar
  19. Hodson, D. (1990). A critical look at practical working school science. School Science Review, 71(256), 33–40.Google Scholar
  20. Hofstein, A. & Lunetta, V. N. (2004). The laboratory in science education: Foundations for the twenty-first century. Science Education, 88, 28–54.CrossRefGoogle Scholar
  21. Hsu, Y. S., Yen, M. H., Chang, W. H., Wang, C. Y. & Chen, S. (2015). Content analysis of 1998–2012 empirical studies in science reading using a self-regulated learning lens. International Journal of Science and Mathematics Education. doi: 10.1007/s10763-014-9574-5
  22. Kjærnsli, M. & Lie, S. (2011). Students’ preference for science careers: International comparisons based on PISA 2006. International Journal of Science Education, 33(1), 121–144.CrossRefGoogle Scholar
  23. Lee, V. E. & Burkam, D. T. (1996). Gender differences in middle grade science achievement: Subject domain, ability level, and course emphasis. Science Education, 80, 613–650.CrossRefGoogle Scholar
  24. Moos, D. C. & Azevedo, R. (2009). Self-efficacy and prior domain knowledge: To what extent does monitoring mediate their relationship with hypermedia learning? Metacognition and Learning, 4(3), 197–216.CrossRefGoogle Scholar
  25. National Research Council (1996). National science education standards. Washington, DC: National Academy Press.Google Scholar
  26. National Research Council (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academy Press.Google Scholar
  27. Organisation for Economic Co-operation and Development. (2007). PISA 2006. Science competencies for tomorrow’s world, vol. 1: Analysis. Paris: Author.Google Scholar
  28. Ojediran, I. A., Oludipe, D. I. & Ehindero, O. J. (2014). Impact of laboratory-based instructional intervention on the learning outcomes of low performing senior secondary students in physics. Creative Education, 5, 197–206.CrossRefGoogle Scholar
  29. Osborne, J., Simon, S. & Collins, S. (2003). Attitudes towards science: A review of the literature and its implications. International Journal of Science Education, 25, 1049–1079.CrossRefGoogle Scholar
  30. Raes, A., Schellens, T., De Weyer, B. & Vanderhoven, E. (2012). Scaffolding information problem solving in web-based collaborative inquiry learning. Computers & Education, 59(1), 82–94.CrossRefGoogle Scholar
  31. Roelle, J., Berthold, K. & Fries, S. (2013). Effects of feedback on learning strategies in learning journals: Learner-expertise matters. In R. Zheng (Ed.), Evolving psychological and educational perspectives on cyber behavior. Hershey, PA: Informational Science Reference.Google Scholar
  32. Sabourin, J., Mott, B., & Lester, J. (2013). Discovering behavior patterns of self-regulated learners in an inquiry-based learning environment. In H. C. Lane, K. Yacef, J. Mostow., & P. Pavlik (Eds) . Artificial Intelligence in Education (pp. 209–218). Berlin, Germany: Springer. Google Scholar
  33. Sinatra, G. M., Heddy, B. C. & Lombardi, D. (2015). The challenges of defining and measuring student engagement in science. Educational Psychologist, 50(1), 1–13.CrossRefGoogle Scholar
  34. Tobin, K. G. (1986). Student task involvement and achievement in process-oriented science activities. Science Education, 70, 61–72.CrossRefGoogle Scholar
  35. Velayutham, S., Aldridge, J. M. & Fraser, B. (2012). Gender differences in student motivation and self-regulation in science learning: A multi-group structural equation modeling analysis. International Journal of Science and Mathematics Education, 10(6), 1347–1368.CrossRefGoogle Scholar
  36. Virtanen, P. & Nevgi, A. (2010). Disciplinary and gender differences among higher education students in self-regulated learning strategies. Educational Psychology, 30(3), 323–347.CrossRefGoogle Scholar
  37. Weinburgh, M. (1995). Gender differences in student attitudes toward science: A meta-analysis of the literature from 1970 to 1991. Journal of Research in Science Teaching, 32, 387–398.CrossRefGoogle Scholar
  38. Winne, P. H. & Hadwin, A. F. (1998). Studying as self-regulated learning. In D. J. Hacker, J. Dunlosky & A. C. Graesser (Eds.), Metacognition in educational theory and practice (pp. 277–304). Mahwah, NJ: Erlbaum.Google Scholar
  39. Wolf, S. J. & Fraser, B. J. (2008). learning environment, attitudes and achievement among middle-school science students using inquiry-based laboratory activities. Research in Science Education, 38, 321–341.CrossRefGoogle Scholar
  40. Yerdelen-Damar, S. & Pesman, H. (2013). Relations of gender and socioeconomic status to physics through metacognition and self-efficacy. Journal of Educational Research, 106(4), 280–289.CrossRefGoogle Scholar
  41. Zohar, A. & Dori, Y. J. (2012). Metacognition in science education: Trends in current research. New York, NY: Springer.Google Scholar

Copyright information

© Ministry of Science and Technology, Taiwan 2015

Authors and Affiliations

  1. 1.National Taiwan University of Science and TechnologyTaipeiRepublic of China

Personalised recommendations