Graphic Comprehension and Interpretation Skills of Preservice Teachers with Different Learning Approaches in a Technology-Aided Learning Environment

Article

Abstract

A one-group quasi-experimental design and survey methodology were used to investigate the effect of virtual laboratory practices on preservice teachers’ (N = 29) graphic comprehension and interpretation skills with different learning approaches. Pretest and posttest data were collected with the Test of Understanding Kinematic Graphs. The Learning Approaches Scale was administered to the preservice science teachers to determine if they used an in-depth, superficial, or strategic approach. These data were analyzed using non-parametric statistics. The effect of virtual laboratory practices on these preservice teachers’ graphic comprehension and interpretation skills was evaluated, and a significant pretest–posttest gain for “Selecting the graphic related to the explanation of movement” was found. Suggestions are made to address the effects of teaching models and technology-integrated learning environments on students’ learning approach in science courses at different levels of education.

Keywords

Graphic comprehension skill Kinematic Learning approaches Simulation 

References

  1. Ak, Ş. (2011). The effects of computer supported problem based learning on students’ approaches to learning. Current Issues in Education, 14(1), 1–17. Retrieved from http://cie.asu.edu/ojs/index.php/cieatasu/article/download/712/85.
  2. Akbaş, O. & Pektaş, H. M. (2011). The effects of using an interactive whiteboard on the academic achievement of university students. Asia-Pacific Forum on Science Learning and Teaching, 12(2), Article 13. Retrieved from http://www.ied.edu.hk/apfslt/download/v12_issue2_files/akbas.pdf
  3. Akpan, J. P. (2001). Issues associated with inserting computer simulations into biology instruction: A review of the literature. Electronic Journal of Science Education, 5(3). Retrieved from http://ejse.southwestern.edu/article/view/7656.
  4. Araujo, I. S., Veit, E. A. & Moreira, M. A. (2008). Physics students’ performance using computational modeling activities to improve kinematics graphs interpretation. Computers & Education, 50(4), 1128–1140. doi:10.1016/j.compedu.2006.11.004.CrossRefGoogle Scholar
  5. Artelt, C., Baumert, J., Julius-McElvany, N. & Peschar, J. (2003). Learners for life: Student approaches to learning- Results from PISA 2000. Retrieved from https://www.mpib-berlin.mpg.de/Pisa/LearnersForLife.pdf
  6. Azar, A. & Aydın-Şengüleç, Ö. (2011). Computer-assisted and laboratory-assisted teaching methods in physics teaching: The effect on student physics achievement and attitude towards physics. Eurasian Journal of Physics and Chemistry Education [Special Issue], 43–50. Retrieved from http://www.eurasianjournals.com/index.php/ejpce/
  7. Bandura, A. (2002). Social cognitive theory in cultural context. Applied Psychology, 51(2), 269–290. doi:10.1111/1464-0597.00092.CrossRefGoogle Scholar
  8. Beichner, R. J. (1990). The effect of simultaneous motion presentation and graph generation in a kinematics lab. Journal of Research in Science Teaching, 27(8), 803–815. doi:10.1002/tea.3660270809.CrossRefGoogle Scholar
  9. Biggs, J. B., Kember, D. & Leung, D. Y. P. (2001). The revised two factor study process questionnaire: R-SPQ-2F. British Journal of Educational Psychology, 71, 133–149.CrossRefGoogle Scholar
  10. Biggs, J. B. & Moore, P. J. (1993). The process of learning. New York, NY: Prentice Hall.Google Scholar
  11. Bjorklund, D. F. (1995). Children’s thinking: Developmental function and individual differences. Pacific Grove, CA: Brooks.Google Scholar
  12. Blake, C. & Scanlon, E. (2007). Reconsidering simulations in science education at a distance: Features of effective use. Journal of Computer Assisted Learning, 23(6), 491–502. doi:10.1111/j.1365-2729.2007.00239.x.CrossRefGoogle Scholar
  13. Bleicher, R. E. & Lindgren, J. (2005). Success in science learning and preservice science teaching self-efficacy. Journal of Science Teacher Education, 16(3), 205–225.CrossRefGoogle Scholar
  14. Büyüköztürk, Ş., Çokluk, Ö. & Köklü, N. (2010). Sosyal Bilimler İçin İstatistik (5. Baskı) [Statistics for social sciences (5th ed.)]. Ankara, Turkey: Pegem Akademi.Google Scholar
  15. Creswell, J. W. (2009). Research design: Qualitative, quantitative, and mixed methods approaches (3rd ed.). Thousand Oaks, CA: Sage.Google Scholar
  16. Demirci, N. & Uyanık, F. (2009). Onuncu sınıf öğrencilerinin grafik anlama ve yorumlamaları ile kinematik başarıları arasındaki ilişki [The correlation between tenth grade students’ understanding and interpreting graphs and their kinematics achievement]. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi (EFMED), 3(2), 22–51. Retrieved from http://www.nef.balikesir.edu.tr/~dergi/makaleler/yayinda/7/EFMED_FZE124.pdf.
  17. Donnison, S. & Penn-Edwards, S. (2012). Focusing on first year assessment: Surface or deep approaches to learning? International Journal of the First Year in Higher Education, 3(2), 9–20.CrossRefGoogle Scholar
  18. Dori, Y. J. & Sasson, I. (2008). Chemical understanding and graphing skills in an honors case-based computerized chemistry laboratory environment: The value of bidirectional visual and textual representations. Journal of Research in Science Teaching, 45(2), 219–250. doi:10.1002/tea.20197.CrossRefGoogle Scholar
  19. Ebenezer, J., Kaya, O. N. & Ebenezer, D. L. (2011). Engaging students in environmental research projects: Perceptions of fluency with innovative technologies and levels of scientific inquiry abilities. Journal of Research in Science Teaching, 48(1), 94–116. doi:10.1002/tea.20387.CrossRefGoogle Scholar
  20. Ekici, G. (2013). Gregorc ve Kolb öğrenme stili modellerine göre öğretmen adaylarının öğrenme stillerinin cinsiyet ve genel akademik başarı açısından incelenmesi [The analysis of teacher candidates’ learning styles in terms of gender and overall academic success according to Gregorc and Kolb Learning Style Models]. Education and Science, 38(167), 211–225. Retrieved from http://egitimvebilim.ted.org.tr/index.php/EB/article/view/1739.
  21. Ekinci, N. (2008). Üniversite öğrencilerinin öğrenme yaklaşımlarının belirlenmesi ve öğretme-öğrenme süreci değişkenleri ile ilişkileri [Undergraduate students’ approaches to learning and their relationships with the variables of the teaching-learning process] (Unpublished doctoral dissertation). Hacettepe Üniversitesi Sosyal Bilimler Enstitüsü, Ankara, Turkey.Google Scholar
  22. Ekinci, N. (2009). Meslek lisesi öğretmenlerinin öğretim biçimleri [Learning approaches of university students]. Education and Science, 34(151), 74–88. Retrieved from http://egitimvebilim.ted.org.tr/index.php/EB/article/view/611.
  23. Ekiz, D. (2009). Bilimsel araştırma yöntemleri: Yaklaşım, yöntem ve teknikler [Research methods: Approaches, methods and techniques]. Ankara: Anı Yayıncılık.Google Scholar
  24. Eshach, H. (2010). Re-examining the power of video motion analysis to promote the reading and creating of kinematic graphs. Asia-Pacific Forum on Science Learning and Teaching, 11(2), Article 8. Retrieved from https://www.ied.edu.hk/apfslt/.
  25. Fadlelmula, F. K., Çakiroglu, E. & Sungur, S. (2014). Developing a structural model on the relationship among motivational beliefs, self-regulated learning strategies, and achievement in mathematics. International Journal of Science and Mathematics Education. Advance online publication. doi:10.1007/s10763-013-9499-4
  26. Fife-Schaw, C. (2012). Quasi-experimental designs. In G. M. Breakwell, J. A. Smith & D. B. Wright (Eds.), Research methods in psychology (4th ed., pp. 75–91). London, England: Sage. Retrieved from http://www.uk.sagepub.com/upm-data/46877_Breakwell_Ch04.pdf.
  27. Gavora, P. (2011). Measuring the self-efficacy of in-service teachers in Slovakia. Orbis Scholae, 5(2), 79–94. Retrieved from http://www.orbisscholae.cz/archiv/2011/2011_2_05.pdf.
  28. Goodwin, C. J. (2010). Research in psychology: Methods and design (6th ed.). Hoboken, NJ: John Wiley & Sons.Google Scholar
  29. Heikkila, A., Lonka, K., Nieminen, J. & Niemivirta, M. (2012). Relations between teacher students’ approaches to learning, cognitive and attributional strategies, well-being, and study success. Higher Education, 64(4), 455–471. doi:10.1007/s10734-012-9504-9.CrossRefGoogle Scholar
  30. Huppert, J., Lomask, S. M. & Lazarowitz, R. (2002). Computer simulations in the high school: Students’ cognitive stages, science process skills and academic achievement in microbiology. International Journal of Science Education, 24(8), 803–821. doi:10.1080/09500690110049150.CrossRefGoogle Scholar
  31. Jaakkola, T. & Nurmi, S. (2008). Fostering elementary school students’ understanding of simple electricity by combining simulation and laboratory activities. Journal of Computer Assisted Learning, 24(4), 271–283. doi:10.1111/j.1365-2729.2007.00259.x.CrossRefGoogle Scholar
  32. Jaakkola, T., Nurmi, S. & Veermans, K. (2011). A comparison of students’ conceptual understanding of electric circuits in simulation only and simulation-laboratory contexts. Journal of Research in Science Teaching, 48(1), 71–93. doi:10.1002/tea.20386.CrossRefGoogle Scholar
  33. Jimoyiannis, A. & Komis, V. (2001). Computer simulations in physics teaching and learning: A case study on students’ understanding of trajectory motion. Computers & Education, 36(2), 183–204. doi:10.1016/S0360-1315(00)00059-2.CrossRefGoogle Scholar
  34. Khan, S. (2011). New pedagogies on teaching science with computer simulations. Journal of Science Education and Technology, 20(3), 215–232. doi:10.1007/s10956-010-9247-2.CrossRefGoogle Scholar
  35. Komis, V., Ergazaki, M. & Zogzaa, V. (2007). Comparing computer-supported dynamic modeling and “paper & pencil” concept mapping technique in students’ collaborative activity. Computers & Education, 49(4), 991–1017. doi:10.1016/j.compedu.2005.12.007.CrossRefGoogle Scholar
  36. Kozhevnikov, M., Hegarty, M. & Mayer, R. (2002). Spatial abilities in problem solving in kinematics. In M. Anderson, B. Meyer & P. Olivier (Eds.), Diagrammatic representation and reasoning (pp. 155–171). London, England: Springer.CrossRefGoogle Scholar
  37. Lamb, R. L., Vallett, D. & Annetta, L. (2014). Development of a short-form measure of science and technology self-efficacy using rasch analysis. Journal of Science Education and Technology, 23(5), 641–657. doi:10.1007/s10956-014-9491-y.CrossRefGoogle Scholar
  38. Lopez, B., Cervero, G., Rodriguez, J., Felix, E. & Esteban, P. (2013). Learning styles and approaches to learning in excellent and average first-year university students. European Journal of Psychology of Education, 28(4), 1361–1379. doi:10.1007/s10212-012-0170-1.CrossRefGoogle Scholar
  39. Meyer, J. H. F. & Muller, M. W. (1990). Evaluating the quality of student learning. I–An unfolding analysis of the association between perceptions of learning context and approaches to studying at an individual level. Studies in Higher Education, 15(2), 131–152. doi:10.1080/03075079012331377471.CrossRefGoogle Scholar
  40. Mintzes, J. J., Marcum, B., Messerschmidt-Yates, C. & Mark, A. (2013). Enhancing self-efficacy in elementary science teaching with professional learning communities. Journal of Science Teacher Education, 24(7), 1201–1218. doi:10.1007/s10972-012-9320-1.CrossRefGoogle Scholar
  41. Mulholland, J., Dorman, J. P. & Odgers, B. M. (2004). Assessment of science teaching efficacy of preservice teachers in an Australian university. Journal of Science Teacher Education, 15(4), 313–331. doi:10.1023/B:JSTE.0000048334.44537.86.CrossRefGoogle Scholar
  42. Nelson Laird, T. F., Shoup, R., Kuh, G. D. & Schwarz, M. J. (2008). The effects of discipline on deep approaches to student learning and college outcomes. Research in Higher Education, 49(6), 469–494. doi:10.1007/s11162-008-9088-5.CrossRefGoogle Scholar
  43. Orhun, E. (2002). Design of computer-based cognitive tools. In E. Orhun & P. A. E. Kommers (Eds.), Information and communication technologies in education: A focus on cognitive tools (pp. 157–174). İzmir, Turkey: Cog-Tech Network Ege University.Google Scholar
  44. Ozan, C. & Çiftçi, M. (2013). Eğitim fakültesi öğrencilerinin öğrenme yaklaşımları tercihleri ve öğrenmeye ilişkin algılarının incelenmesi [Analysis of approaches to learning preferences and perceptions of learning of students in faculty of education]. Pegem Eğitim ve Öğretim Dergisi, 3(1), 55–66.Google Scholar
  45. Pektaş, H. M., Çelik, H., Katrancı, M. & Köse, S. (2009). Effect of computer-based instruction material on student success in sound and light unit at 5th grade. Kastamonu University Kastamonu Education Journal, 17(2), 657–667. Retrieved from http://www.turkegitimindeksi.com/PDFArticle.aspx.
  46. Pimparyon, P., Caleer, S. M., Pemba, S. & Roff, S. (2000). Educational environment, student approaches to learning and academic achievement in a Thai nursing school. Medical Teacher, 22(4), 359–364. doi:10.1080/014215900409456.CrossRefGoogle Scholar
  47. Planinic, M., Milin-Sipus, Z., Katic, H., Susac, A. & Ivanjek, L. (2012). Comparison of student understanding of line graph slope in physics and mathematics. International Journal of Science and Mathematics Education, 10(6), 1393–1414. doi:10.1007/s10763-012-9344-1.CrossRefGoogle Scholar
  48. Prosser, M. & Trigwell, K. (1990). Student evaluations of teaching and courses: Student study strategies as a criterion of validity. Higher Education, 20(2), 135–142. doi:10.1007/BF00143697.CrossRefGoogle Scholar
  49. Ramsden, P. (1979). Student learning and perceptions of the academic environment. Higher Education, 8(4), 411–427. doi:10.1007/BF01680529.CrossRefGoogle Scholar
  50. Reid, W. A., Duvall, E. & Evans, P. (2007). Relationship between assessment results and approaches to learning and studying in year two medical students. Medical Education, 41(8), 754–762. doi:10.1111/j.1365-2923.2007.02801.x.CrossRefGoogle Scholar
  51. Renshaw, C. E. & Taylor, H. A. (2000). The educational effectiveness of computer based instruction. Computers and Geosciences, 26(6), 677–682. doi:10.1016/S0098-3004(99)00103-X.CrossRefGoogle Scholar
  52. Richardson, J. T. E. (2005). Students’ approaches to learning and teachers’ approaches to teaching in higher education. Educational Psychology, 25(6), 673–680. doi:10.1080/01443410500344720.CrossRefGoogle Scholar
  53. Rutten, N., Joolingen, W. R. & Van der Veen, J. T. (2012). The learning effects of computer simulations in science education. Computers & Education, 58, 136–153. doi:10.1016/j.compedu.2011.07.017.CrossRefGoogle Scholar
  54. Scaife, J. & Wellington, J. (1993). Information technology in science and technology education. Buckingham, England: Open University Press.Google Scholar
  55. Şengel, E. & Özden, M. Y. (2010). The effects of computer simulated experiments on high school students’ understanding of the displacement and velocity concepts. Eurasian Journal of Educational Research, 39, 191–211. Retrieved from http://www.ejer.com.tr/?git=22&kategori=86&makale=698.
  56. Simpson, G., Hoyles, C. & Noss, R. (2006). Exploring the mathematics of motion through construction and collaboration. Journal of Computer Assisted Learning, 22, 114–136. doi:10.1111/j.1365-2729.2006.00164.x.CrossRefGoogle Scholar
  57. Snelgrove, S. & Slater, J. (2003). Approaches to learning: Psychometric testing of a study process questionnaire. Journal of Advanced Nursing, 43(5), 496–505. doi:10.1046/j.1365-2648.2003.02747.x.CrossRefGoogle Scholar
  58. Sönmez, V. & Alacapinar, F. G. (2011). Örneklendirilmiş bilimsel araştırma yöntemleri [An example of scientific research methods]. Ankara, Turkey: Anı Yayıncılık.Google Scholar
  59. Taşar, M. F., Kandil-İngeç, S. & Ünlü-Güneş, P. (2002). Grafik çizme ve anlama becerisinin saptanmasI [Measuring students’ skills of drawing and understanding graphs]. Poster session presented at the Fifth National Congress of Science and Mathematics Education. Ankara, Turkey: Middle East Technical University.Google Scholar
  60. Trigwell, K., Prosser, M. & Waterhouse, F. (1999). Relations between teachers’ approaches to teaching and students’ approaches to learning. Higher Education, 37, 57–70. doi:10.1023/A:1003548313194.CrossRefGoogle Scholar
  61. Ulukök, Ş., Çelik, H. & Sarı, U. (2013). Basit elektrik devreleriyle ilgili bilgisayar destekli uygulamaların deneysel süreç becerilerinin gelişimine etkisi [The effects of computer-assisted instruction of simple circuits on experimental process skills]. Kuramsal Eğitimbilim Dergisi, 6(1), 77–101. Retrieved from http://keg.aku.edu.tr/index.php/anasayfa/article/view/252.
  62. Usher, E. L. & Pajares, F. (2008). Self-efficacy for self-regulated learning: A validation study. Educational and Psychological Measurement, 68(3), 443–463. doi:10.1177/0013164407308475.CrossRefGoogle Scholar
  63. Uşun, S. (2004). Bilgisayar destekli öğretimin temelleri [Foundations of computer assisted instruction]. Ankara, Turkey: Nobel Yayıncılık.Google Scholar
  64. Uyan, T. & Önen, A. S. (2013). Bilgisayar destekli öğretim uygulamalarının öğretmen adaylarının grafiksel beceri, tutum ve başarılarına etkisi [The effects of computer aided teaching applications on graphical skill, attitude and performances of pre-service teachers]. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 44, 331–340. Retrieved from http://www.efdergi.hacettepe.edu.tr/201344T%C3%9CL%C4%B0N%20UYAN.pdf.
  65. Wu, W., Chang, H. P. & Guo, C. J. (2009). The development of an instrument for a technology-integrated science learning environment. International Journal of Science and Mathematics Education, 7(1), 207–233. doi:10.1007/s10763-007-9116-5.CrossRefGoogle Scholar
  66. Yılmaz, M., Köseoğlu, P., Gerçek, C. & Soran, H. (2004). Öğretmen öz-yeterlik inancı [Teacher self-efficacy beliefs]. Bilim ve Aklın Aydınlığında Eğitim Dergisi, 5(58). Retrieved from http://baae.meb.gov.tr/
  67. Zeegers, P. (2001). Approaches to learning in science: A longitudinal study. British Journal of Educational Psychology, 71(1), 115–132. doi:10.1348/000709901158424.CrossRefGoogle Scholar

Copyright information

© Ministry of Science and Technology, Taiwan 2015

Authors and Affiliations

  1. 1.Kırıkkale UniversityYahşihanTurkey

Personalised recommendations