Advertisement

Gender Differences in Eye Movements in Solving Text-and-Diagram Science Problems

  • Po-Sheng Huang
  • Hsueh-Chih ChenEmail author
Article

Abstract

The main purpose of this study was to examine possible gender differences in how junior high school students integrate printed texts and diagrams while solving science problems. We proposed the response style hypothesis and the spatial working memory hypothesis to explain possible gender differences in the integration process. Eye-tracking technique was used to explore these hypotheses. The results of eye-movement indices support the response style hypothesis. Compared to male students, female students spent more time and displayed more fixations in solving science problems. The female students took more time to read the print texts and compare the information between print-based texts and visual-based diagrams more frequently during the problem-solving process than the male students. However, no gender differences were found in the accuracy of their responses to the science problems or their performances in the spatial working memory task. Implications for psychological theory and educational practice are discussed.

Keywords

Cognitive load Eye movement Response style Spatial working memory Text-diagram integration 

Notes

Acknowledgments

This research is partially supported by the “Aim for the Top University Project” and “Center of Learning Technology for Chinese” of National Taiwan Normal University (NTNU), sponsored by the Ministry of Education, Taiwan, R.O.C., and the “International Research-Intensive Center of Excellence Program” of NTNU and the Ministry of Science and Technology, Taiwan, R.O.C., under grant no. NSC 97-2511-S-003-035-MY2. The authors would like to express our deepest gratitude and appreciation to Prof. Larry Yore and Shari Yore for their assistance in the conceptual and technical revision of this article.

References

  1. Ainsworth, S. & Loizou, A. T. (2003). The effects of self-explaining when learning with text or diagrams. Cognitive Science, 27, 669–681. doi: 10.1016/S0364-0213(03)00033-8.CrossRefGoogle Scholar
  2. Ariasi, N. & Mason, L. (2014). From covert processes to overt outcomes of refutation text reading: The interplay of science text structure and working memory capacity through eye fixations. International Journal of Science and Mathematics Education, 12(3), 493–523. doi: 10.1007/s10763-013-9494-9.CrossRefGoogle Scholar
  3. Baddeley, A. (2002). Is working memory still working? European Psychologist, 7, 85–97. doi: 10.1027//1016-9040.7.2.85.CrossRefGoogle Scholar
  4. Baddeley, A. (2003). Working memory and language: An overview. Journal of Communication Disorders, 36(3), 189–208. doi: 10.1016/S0021-9924(03)00019-4.CrossRefGoogle Scholar
  5. Bell, J. F. (2001). Investigating gender differences in the science performance of 16-year-old pupils in the UK. International Journal of Science Education, 23(5), 469–486. doi: 10.1080/09500690120123.CrossRefGoogle Scholar
  6. Brünken, R., Plass, J. L. & Leutner, D. (2003). Direct measurement of cognitive load in multimedia learning. Educational Psychologist, 38(1), 53–61. doi: 10.1207/S15326985EP3801_7.CrossRefGoogle Scholar
  7. Carney, R. N. & Levin, J. R. (2002). Pictorial illustrations still improve students’ learning from text. Educational Psychology Review, 14(1), 5–26. doi: 10.1023/A:1013176309260.CrossRefGoogle Scholar
  8. Chang, Y.-W., Lin, W.-Y. & Wang, J.-W. (2013). Is gender gap in science performance closer? Investigating data from International Science Study. Bulletin of Educational Psychology, 44(Special Issue), 459–476.Google Scholar
  9. Chen, H.-C., Lai, H.-D. & Chiu, F.-C. (2010). Eye tracking technology for learning and education. Journal of Research in Education Sciences, 55(4), 39–68.Google Scholar
  10. Chen, Y. C. & Yang, F. Y. (2014). Probing the relationship between process of spatial problems solving and science learning: An eye tracking approach. International Journal of Science and Mathematics Education, 12(3), 579–603. doi: 10.1007/s10763-013-9504-y.CrossRefGoogle Scholar
  11. Cheng, M.-C., Chou, P.-I., Wang, Y.-T. & Lin, C.-H. (2015). Learning effects of a science textbook designed with adapted cognitive process principles on grade 5 students. International Journal of Science and Mathematics Education 13(3), 467–488.Google Scholar
  12. Chien, Y. C. & Wu, C. J. (2012). The effect of arrows in an illustration when reading scientific text: Evidence from eye movements and reading tests. Chinese Journal of Psychology, 54(3), 385–402.Google Scholar
  13. Chou, P.-I. & Cheng, M.-C. (2010, January).Content analysis on illustrations in science and technology textbooks used in Taiwan’s junior high schools. Paper presented at the 6th International Conference on Science, Mathematics and Technology Education, Hualien, Taiwan.Google Scholar
  14. Clark, R. C. & Lyons, C. (2004). Graphics for learning. San Francisco, CA: Pfeiffer.Google Scholar
  15. Collaer, M. L. & Nelson, J. D. (2002). Large visuospatial sex difference in line judgment: Possible role of attentional factors. Brain and Cognition, 49(1), 1–12. doi: 10.1006/brcg.2001.1321.CrossRefGoogle Scholar
  16. Cook, M. P. (2006). Visual representations in science education: The influence of prior knowledge and cognitive load theory on instructional design principles. Science Education, 90(6), 1073–1091. doi: 10.1002/sce.20164.CrossRefGoogle Scholar
  17. Danili, E. & Reid, N. (2004). Some strategies to improve performance in school chemistry, based on two cognitive factors. Research in Science and Technological Education, 22, 203–226. doi: 10.1080/0263514042000290903.CrossRefGoogle Scholar
  18. Duchowski, A. T. (2007). Eye tracking methodology: Theory and practice (2nd ed.). New York, NY: Springer.Google Scholar
  19. Gathercole, S. E., Pickering, S. J., Knight, C. & Stegmann, Z. (2004). Working memory skills and educational attainment: Evidence from national curriculum assessments at 7 and 14 years of age. Applied Cognitive Psychology, 18, 1–16. doi: 10.1002/acp.934.CrossRefGoogle Scholar
  20. Geiger, J. F. & Litwiller, R. M. (2005). Spatial working memory and gender differences in science. Journal of Instructional Psychology, 32, 49–57.Google Scholar
  21. Halpern, D. F. (2004). A cognitive-process taxonomy for sex differences in cognitive abilities. Current Directions in Psychological Science, 13(4), 135–139. doi: 10.1111/j.0963-7214.2004.00292.x.CrossRefGoogle Scholar
  22. Halpern, D. F. (2013). Sex differences in cognitive abilities (4th ed.). New York, NY: Psychology Press.Google Scholar
  23. Halpern, D. F., Benbow, C. P., Geary, D. C., Gur, R. C., Hyde, J. S. & Gernsbacher, M. A. (2007). The science of sex differences in science and mathematics. Psychological Science in the Public Interest, 8(1), 1–51.Google Scholar
  24. Ho, H. N. J., Bubic, A., Kaponja, J., Wang, C.-Y. & Tsai, C.-C. (2014). Prior knowledge and online inquiry-based science reading: Evidence from eye tracking. International Journal of Science and Mathematics Education, 12(3), 525–554. doi: 10.1111/j.1529-1006.2007.00032.x.CrossRefGoogle Scholar
  25. Hung, Y. N. (2014). “What are you looking at?” An eye movement exploration in science text reading. International Journal of Science and Mathematics Education, 12(2), 241–260. doi: 10.1007/s10763-013-9406-z.CrossRefGoogle Scholar
  26. Kaufman, S. B. (2007). Sex differences in mental rotation and spatial visualization ability: Can they be accounted for by differences in working memory capacity? Intelligence, 35(3), 211–223. doi: 10.1016/j.intell.2006.07.009.CrossRefGoogle Scholar
  27. Kliese, T. & Over, R. (1993). Does supplementing text by illustrations enhance comprehension? Australian Journal of Adult and Community Education, 33, 180–186.Google Scholar
  28. Lee, V. R. (2010). Adaptations and continuities in the use and design of visual representations in US middle school science textbooks. International Journal of Science Education, 32(8), 1099–1126. doi: 10.1080/09500690903253916.CrossRefGoogle Scholar
  29. Lewandowsky, S., Oberauer, K., Yang, L. X. & Ecker, U. K. (2010). A working memory test battery for MATLAB. Behavior Research Methods, 42(2), 571–585. doi: 10.3758/BRM.42.2.571.CrossRefGoogle Scholar
  30. Martin, M. O., Mullis, I. V. S., Foy, P. & Stanco, G. M. (2012). TIMSS 2011 international results in science. Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Boston College.Google Scholar
  31. Mayer, R. E. (2001). Multimedia learning. New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  32. Mayer, R. E. (2005). Cognitive theory of multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 31–48). New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  33. Mayer, R. E., Hegarty, M., Mayer, S. & Campbell, J. (2005). When static media promote active learning: Annotated illustrations versus narrated animations in multimedia instruction. Journal of Experimental Psychology: Applied, 11(4), 256–265. doi: 10.1037/1076-898X.11.4.256.Google Scholar
  34. Paivio, A. (1990). Mental representations: A dual coding approach. Oxford, England: Oxford University Press.CrossRefGoogle Scholar
  35. Pauls, F., Petermann, F. & Lepach, A. C. (2013). Gender differences in episodic memory and visual working memory including the effects of age. Memory, 21(7), 857–874. doi: 10.1080/09658211.2013.765892.CrossRefGoogle Scholar
  36. Peters, M. (2005). Sex differences and the factor of time in solving Vanderberg and Kuse mental rotation problems. Brain and Cognition, 57, 176–184. doi: 10.1016/j.bandc.2004.08.052.CrossRefGoogle Scholar
  37. Plass, J. L., Moreno, R. & Brünken, R. (2010). Cognitive load theory. Cambridge, England: Cambridge University Press.CrossRefGoogle Scholar
  38. Rayner, K. (2009). Eye movements and attention in reading, scene perception, and visual search. Quarterly Journal of Experimental Psychology, 62(8), 1457–1506. doi: 10.1080/17470210902816461.CrossRefGoogle Scholar
  39. Richards, C. (2002). The fundamental design variables of diagramming. In M. Anderson, B. Meyer & P. Olivier (Eds.), Diagrammatic representation and reasoning (pp. 85–102). London, England: Springer.CrossRefGoogle Scholar
  40. Rohr, L. E. (2006a). Gender-specific movement strategies using a computer-pointing task. Journal of Motor Behavior, 38(6), 431–137. doi: 10.3200/JMBR. 38.6.431-137.CrossRefGoogle Scholar
  41. Rohr, L. E. (2006b). Upper and lower limb reciprocal tapping: Evidence for gender biases. Journal of Motor Behavior, 38(1), 15–17. doi: 10.3200/JMBR.38.1.15–17.CrossRefGoogle Scholar
  42. Sanchez, C. A. & Wiley, J. (2010). Sex differences in science learning: Closing the gap through animations. Learning and Individual Differences, 20(3), 271–275. doi: 10.1016/j.lindif.2010.01.003.CrossRefGoogle Scholar
  43. Schnotz, W. & Bannert, M. (2003). Construction and interference in learning from multiple representation. Learning and Instruction, 13(2), 141–156. doi: 10.1016/S0959-4752(02)00017-8.CrossRefGoogle Scholar
  44. Staberg, E. (1994). Gender and science in the Swedish compulsory school. Gender and Education, 6(1), 35–45. doi: 10.1080/0954025940060103.CrossRefGoogle Scholar
  45. Sweller, J. (2003). Evolution of human cognitive architecture. In B. Ross (Ed.), The psychology of learning and motivation (Vol. 43, pp. 215–216). San Diego, CA: Academic.Google Scholar
  46. Sweller, J. (2005). Implications of cognitive load theory for multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 19–30). New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  47. Tippett, C. D. (2011).Exploring middle school students’ representational competence in science: Development and verification of a framework for learning with visual representations (Doctoral dissertation). University of Victoria, Victoria, British Columbia, Canada. Retrieved from http://hdl.handle.net/1828/3250
  48. Treagust, D. F. (2007). General instructional methods and strategies. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 373–391). Mahwah, NJ: Erlbaum.Google Scholar
  49. Tsaparlis, G. (2005). Non-algorithmic quantitative problem solving in university physical chemistry: A correlation study of the role of selective cognitive factors. Research in Science & Technological Education, 23, 125–148. doi: 10.1080/02635140500266369.CrossRefGoogle Scholar
  50. Van Gerven, P. W., Paas, F., Van Merriënboer, J. J. & Schmidt, H. G. (2004). Memory load and the cognitive pupillary response in aging. Psychophysiology, 41(2), 167–174. doi: 10.1111/j.1469-8986.2003.00148.x.CrossRefGoogle Scholar
  51. Voyer, D. (2011). Time limits and gender differences on paper-and-pencil tests of mental rotation: A meta-analysis. Psychonomic Bulletin & Review, 18(2), 267–277. doi: 10.3758/s13423-010-0042-0.CrossRefGoogle Scholar
  52. Voyer, D. & Sullivan, A. (2003). The relation between spatial and mathematical abilities: Potential factors underlying suppression. International Journal of Psychology, 38(1), 11–23. doi: 10.1080/00207590244000241.CrossRefGoogle Scholar
  53. Weiss, E. M., Kemmler, G., Deisenhammer, E. A., Fleischhacker, W. W. & Delazer, M. (2003). Sex differences in cognitive functions. Personality and Individual Differences, 35(4), 863–875. doi: 10.1016/S0191-8869(02)00288-X.CrossRefGoogle Scholar
  54. Wu, Y.-C. (2012). A study on the relationship among the visuo-spatial working memory, spatial ability, and mathematical geometry performance of general students and learning disability students in junior high school (Master’s thesis). National University of Tainan, Tainan, Taiwan.Google Scholar
  55. Yang, F. Y., Chang, C. Y., Chien, W. R., Chien, Y. T. & Tseng, Y. H. (2013). Tracking learners’ visual attention during a multimedia presentation in a real classroom. Computers & Education, 62, 208–220. doi: 10.1016/j.compedu.2012.10.009.CrossRefGoogle Scholar
  56. Yore, L. D. & Tippett, C. D. (2014). Reading and science learning. In R. Gunstone (Ed.), Encyclopaedia of science education (pp. 821–828). Dordrecht, The Netherlands: Springer.Google Scholar
  57. Yu, P.-C. (2012). The relationship among working memory, number sense and mathematics achievement of junior high school students (Master’s thesis). National Taiwan Normal University, Taipei, Taiwan.Google Scholar

Copyright information

© Ministry of Science and Technology, Taiwan 2015

Authors and Affiliations

  1. 1.Hsuan Chuang UniversityHsinchu CityTaiwan
  2. 2.Department of Educational Psychology and CounselingNational Taiwan Normal UniversityTaipei CityRepublic of China

Personalised recommendations