Advertisement

Why Use Multiple Representations in the Mathematics Classroom? Views of English and German Preservice Teachers

  • Anika Dreher
  • Sebastian Kuntze
  • Stephen Lerman
Article

Abstract

Dealing with multiple representations and their connections plays a key role for learners to build up conceptual knowledge in the mathematics classroom. Hence, professional knowledge and views of mathematics teachers regarding the use of multiple representations certainly merit attention. In particular, investigating such views of preservice teachers affords identifying corresponding needs for teacher education. However, specific empirical research is scarce. Taking into account the possible role of culture, this study consequently focuses on views about using multiple representations held by more than 100 English and more than 200 German preservice teachers. The results indicate that there are culture-dependent aspects of preservice teachers’ views, but also that there are common needs for professional development.

Keywords

Fractions Multiple representations Preservice teachers Transnational design Views 

Notes

Acknowledgments

The data gathering phase of this study has been supported in the framework of the project ABCmaths which was funded with support from the European Commission (503215-LLP-1-2009-1-DE-COMENIUS-CMP). This publication reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

References

  1. Acevedo Nistal, A., van Dooren, W., Clarebout, G., Elen, J. & Verschaffel, L. (2009). Conceptualising, investigating and stimulating representational flexibility in mathematical problem solving and learning: A critical review. ZDM The International Journal on Mathematics Education, 41(5), 627–636.CrossRefGoogle Scholar
  2. Ainsworth, S. (2006). A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16, 183–198.CrossRefGoogle Scholar
  3. Arbuckle, J. L. (2012). IBM SPSS Amos 19 user’s guide. Chicago, IL: IBM.Google Scholar
  4. Ball, D. L. (1993). Halves, pieces, and twoths: Constructing representational contexts in teaching fractions. In T. Carpenter, E. Fennema & T. Romberg (Eds.), Rational numbers: An integration of research (pp. 157–196). Hillsdale, NJ: Erlbaum.Google Scholar
  5. Ball, D.L. & Hill, H.C. (2008). Mathematical knowledge for teaching (MKT) measures. Mathematics released items 2008. Retrieved from http://sitemaker.umich.edu/lmt/files/LMT_sample_items.pdf.
  6. Ball, D. L., Thames, M. H. & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389–407.CrossRefGoogle Scholar
  7. Bodemer, D. & Faust, U. (2006). External and mental referencing of multiple representations. Computers in Human Behavior, 22, 27–42.CrossRefGoogle Scholar
  8. Bossé, M. J., Adu-Gyamfi, K. & Cheetham, M. (2011). Translations among mathematical representations: Teacher beliefs and practices. International Journal of Mathematics Teaching and Learning. Retrieved from http://www.cimt.plymouth.ac.uk/journal/bosse4.pdf.
  9. Brenner, M., Herman, S., Ho, H. & Zimmer, J. (1999). Cross-national comparison of representational competence. Journal for Research in Mathematics Education, 30(5), 541–557.Google Scholar
  10. Charalambous, C. Y. & Pitta-Pantazi, D. (2007). Drawing on a theoretical model to study students’ understandings of fractions. Educational Studies in Mathematics, 64, 293–316.CrossRefGoogle Scholar
  11. Doerr, H. & Lerman, S. (2009). The procedural and the conceptual in mathematics pedagogy: What teachers learn from their teaching. In M. Tzekaki, M. Kaldrimidou & H. Sakonidis (Eds.), Proceedings of 33th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 433–440). Thessaloniki, Greece: PME.Google Scholar
  12. Dreher, A. (2012). Vorstellungen von Lehramtsstudierenden zum Nutzen vielfältiger Darstellungen im Mathematikunterricht [Preservice teachers' views on using multiple representations in the mathematics classroom]. In M. Ludwig & M. Small (Eds.), Beiträge zum Mathematikunterricht 2012 (pp. 205–208). Münster: WTM-Verlag.Google Scholar
  13. Dreher, A. & Kuntze, S. (2015). Teachers’ professional knowledge and noticing: The case of multiple representations in the mathematics classroom. Educational Studies in Mathematics, 88(1), 89–114.Google Scholar
  14. Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61, 103–131.CrossRefGoogle Scholar
  15. Elia, I., Panaoura, A., Eracleous, A. & Gagatsis, A. (2007). Relations between secondary pupils’ conceptions about functions and problem solving in different representations. Journal of Science and Mathematics Education, 5(3), 533–556.Google Scholar
  16. Even, R. (1990). Subject matter knowledge for teaching and the case of functions. Educational Studies in Mathematics, 21(6), 521–544.CrossRefGoogle Scholar
  17. Goldin, G. & Shteingold, N. (2001). Systems of representation and the development of mathematical concepts. In A. A. Cuoco & F. R. Curcio (Eds.), The role of representation in school mathematics (pp. 1–23). Boston, Virginia: NCTM.Google Scholar
  18. Graham, A. T., Pfannkuch, M. & Thomas, M. (2009). Versatile thinking and the learning of statistical concepts. ZDM The International Journal on Mathematics Education, 41(5), 681–695.CrossRefGoogle Scholar
  19. Gravemeijer, K., Lehrer, R., van Oers, B. & Verschaffel, L. (2002). Symbolizing, modeling and tool use in mathematics education. Dordrecht, The Netherland: Kluwer.Google Scholar
  20. Hill, H. C., Schilling, S. G. & Ball, D. L. (2004). Developing measures of teachers’ mathematics knowledge for teaching. Elementary School Journal, 105, 11–30.CrossRefGoogle Scholar
  21. Jöreskog, K. G. (1971). Statistical analysis of sets of cogeneric tests. Psychometrica, 36(2), 109–133.CrossRefGoogle Scholar
  22. Kaiser, G. (2002). Educational philosophies and their influence on mathematics education – An ethnographic study in English and German mathematics classrooms. Zentralblatt für Didaktik der Mathematik 34,(6), 241–257.Google Scholar
  23. Kline, R. B. (2005). Principles and practice of structural equation modeling (2nd ed.). New York, NY: Guilford.Google Scholar
  24. Kultusministerkonferenz (KMK). (2003). Bildungsstandards im Fach Mathematik für den Mittleren Schulabschluss [Education standards in mathematics for an intermediate school-leaving certificate]. Retrieved from http://www.kmk.org/fileadmin/veroeffentlichungen_beschluesse/2003/2003_12_04-Bildungsstandards-Mathe-Mittleren-SA.pdf.
  25. Kunter, M., Baumert, J., Blum, W., Klusmann, U., Krauss, S. & Neubrand, M. (2011). Professionelle Kompetenz von Lehrkräften. Ergebnisse des Forschungsprogramms COACTIV [Professional competence of teachers. Results from the COACTIV Projekt]. Münster: Waxmann.Google Scholar
  26. Kuntze, S. (2012). Pedagogical content beliefs: global, content domain-related and situation-specific components. Educational Studies in Mathematics, 79(2), 273–292.Google Scholar
  27. Kuntze, S., & Dreher, A. (2014). PCK and the awareness of affective aspects reflected in teachers’ views about learning opportunities – a conflict? In B. Pepin & B. Rösken-Winter (Eds.), From beliefs to dynamic affect systems in mathematics education: Exploring a mosaic of relationships and interactions -Advances in Mathematics Education series (pp. 295–318). New York, NY: Springer.Google Scholar
  28. Kuntze, S., Lerman, S., Murphy, B., Kurz-Milcke, E., Siller, H.-S. & Winbourne, P. (2011). Development of pre-service teachers’ knowledge related to big ideas in mathematics. In B. Ubuz (Ed.), Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 105-112). Ankara, Turkey: PME.Google Scholar
  29. Leikin, R., Leikin, M., Waisman, I. & Shaul, S. (2013). Effect of the presence of external representations on accuracy and reaction time in solving mathematical double-choice problems by students of different levels of instruction. International Journal of Science and Mathematics Education, 11(5), 1049–1066.CrossRefGoogle Scholar
  30. Lerman, S. (2001). A review of research perspectives on mathematics teacher education. In F.-L. Lin & T. J. Cooney (Eds.), Making sense of mathematics teacher education (pp. 33–52). Doderecht, The Netherland: Kluwer.Google Scholar
  31. Malle, G. (2004). Grundvorstellungen zu Bruchzahlen [Basic ideas “Grundvorstellungen” of rational numbers]. Mathematik Lehren, 123, 4–8.Google Scholar
  32. McLeod, D. B. & McLeod, S. H. (2002). Synthesis—beliefs and mathematics education: Implications for learning, teaching and research. In G. C. Leder, E. Pehkonen & G. Torner (Eds.), Beliefs: A hidden variable in mathematics education (pp. 115–123). Dordrecht, The Netherland: Kluwer.Google Scholar
  33. Meira, L. (1998). Making sense of instructional devices: The emergence of transparency in mathematical activity. Journal for Research in Mathematics Education, 29(2), 121–142.CrossRefGoogle Scholar
  34. National Council of Teachers in Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: NCTM.Google Scholar
  35. Pajares, F. M. (1992). Teachers’ beliefs and educational research: Cleaning up a messy construct. Review of Educational Research, 62(3), 307–332.CrossRefGoogle Scholar
  36. Pehkonen, E. & Pietilä, A. (2003). On relationships between beliefs and knowledge in mathematics education. Retrieved from http://www.dm.unipi.it/~didattica/CERME3/proceedings/Groups/TG2/TG2_pehkonen_cerme3.pdf.
  37. Pepin, B. (1999). Epistemologies, beliefs and conceptions of mathematics teaching and learning: The theory, and what is manifested in mathematics teachers’ practices in England, France and Germany. In B. Hudson, F. Buchberger, P. Kansanen & H. Seel (Eds.), Didaktik/Fachdidaktik as science(s) of the teaching profession (pp. 127–146). Umeå: TNTEE.Google Scholar
  38. Qualifications and Curriculum Authority (2007). textit{Mathematics – Programme of study for key stages 3 and attainment targets}. Retrieved from http://webarchive.nationalarchives.gov.uk/20101221004558/http:/curriculum.qcda.gov.uk/uploads/QCA-07-3338-p_Maths_3_tcm8-403.pdf.
  39. Rau, M. A., Aleven, V. & Rummel, N. (2009). Intelligent tutoring systems with multiple representations and self-explanation prompts support learning of fractions. In V. Dimitrova, R. Mizoguchi & B. du Boulay (Eds.), Proceedings of the 14th International Conference on Artificial Intelligence in Education (pp. 441–448). Amsterdam: Ios Press.Google Scholar
  40. Renkl, A., Berthold, K., Große, C. S. & Schwonke, R. (2013). Making better use of multiple representations: How fostering metacognition can help. In R. Azevedo & V. Aleven (Eds.), International handbook of metacognition and learning technologies (pp. 397–408). New York, NY: Springer.Google Scholar
  41. Schnotz, W. & Bannert, M. (2003). Construction and interference in learning from multiple representation. Learning and Instruction, 13, 141–156.CrossRefGoogle Scholar
  42. Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14.CrossRefGoogle Scholar
  43. Siegler, R. S., Carpenter, T., Fennell, F., Geary, D., Lewis, J., Okamoto, Y., Thompson, L. & Wray, J. (2010). Developing effective fractions instruction: A practice guide. Washington, DC: National Center for Education Evaluation and Regional Assistance.Google Scholar
  44. Staub, F. & Stern, E. (2002). The nature of teachers’ pedagogical content beliefs matter for students’ achievement gains: Quasi-experimental evidence from elementary mathematics. Journal of Educational Psychology, 94(2), 344–355.CrossRefGoogle Scholar
  45. Steinbring, H. (2000). Mathematische Bedeutung als eine soziale Konstruktion – Grundzüge der epistemologisch orientierten mathematischen Interaktionsforschung [Mathematical meaning as a social construction – Main features of the epistemology oriented mathematical interaction research]. Journal für Mathematik-Didaktik, 21(1), 28–49.CrossRefGoogle Scholar
  46. Tall, D. (1988). Concept image and concept definition. In J. de Lange & M. Doorman (Eds.), Senior secondary mathematics education (pp. 37–41). Utrecht: OW & OC.Google Scholar
  47. Törner, G. (2002). Mathematical beliefs—A search for a common ground. In G. Leder, E. Pehkonen & G. Törner (Eds.), Beliefs: A hidden variable in mathematics education? (pp. 73–94). Dordrecht, The Netherlands: Kluwer.Google Scholar
  48. Tripathi, P. (2008). Developing mathematical understanding through multiple representations. Mathematics Teaching in the Middle School, 13(8), 438–445.Google Scholar
  49. van der Meij, J. & de Jong, T. (2006). Supporting students’ learning with multiple representations in a dynamic simulation-based learning environment. Learning and Instruction, 16, 199–212.CrossRefGoogle Scholar

Copyright information

© Ministry of Science and Technology, Taiwan 2015

Authors and Affiliations

  • Anika Dreher
    • 1
  • Sebastian Kuntze
    • 1
  • Stephen Lerman
    • 2
  1. 1.Ludwigsburg University of EducationLudwigsburgGermany
  2. 2.Department of Education, Centre for Mathematics EducationLondon South Bank UniversityLondonUK

Personalised recommendations