Advertisement

Components of Science Teachers’ Professional Competence and Their Orientational Frameworks when Dealing with Uncertain Evidence in Science Teaching

  • Jan RuhrigEmail author
  • Dietmar Höttecke
Article

Abstract

The generation of reliable and certain evidence is among the central objectives of the natural sciences. However, in real-world scientific research, dealing with uncertainty is often a necessary part of the establishment of certain knowledge. Therefore, science teaching has to take into consideration the fact that evidence is not only reliable: Whenever science is still in the making, evidence may be temporarily uncertain, varying, and fragile. This study reconstructs aspects of science teachers’ professional competence as well as their orientational frameworks when dealing with uncertain evidence in science teaching. Semi-structured interviews with video vignettes used as interview stimuli were conducted with 26 science teachers. The video vignettes were carefully designed and validated in order to illustrate situations in which uncertain evidence unexpectedly arises during science teaching. The generated data were analyzed based on the documentary method and qualitative data analysis. Results indicate that teachers employ a variety of strategies for dealing with uncertain evidence. Furthermore, our results point to connections between teachers’ instructional strategies and their beliefs about their own and their students’ roles.

Keywords

Uncertain evidence Teachers’ professional competence Instructional strategies Video vignettes 

References

  1. Abd-El Khalick, F. & Lederman, N. G. (2000). Improving science teachers’ conceptions of nature of science: A critical review of the literature. International Journal of Science Education, 22(7), 665–701.CrossRefGoogle Scholar
  2. Abd-El-Khalick, F. (2013). Teaching with and about nature of science, and science teacher knowledge domains. Science & Education, 22, 2087–2107.CrossRefGoogle Scholar
  3. Akerson, V. L., Cullen, T. A. & Hanson, D. L. (2009). Fostering a community of practice through a professional development program to improve elementary teachers’ views of nature of science and teaching practice. Journal of Research in Science Teaching, 46(10), 1090–1113.CrossRefGoogle Scholar
  4. Allchin, D. (2011). Evaluating knowledge of the nature of (whole) science. Science Education, 95(3), 518–542.CrossRefGoogle Scholar
  5. Aufschnaiter, C. V. & Blömeke, S. (2010). Professionelle Kompetenz von (angehenden) Lehrkräften erfassen - Desiderata [Professional competence of (prospective) teachers capture - Desiderata]. Zeitschrift für Didaktik der Naturwissenschaften, 16, 303–309.Google Scholar
  6. Baumert, J. & Kunter, M. (2006). Stichwort: Professionelle Kompetenz von Lehrkräften [Keywords: Professional competence of teachers]. Zeitschrift für Erziehungswissenschaft, 9(4), 469–520.CrossRefGoogle Scholar
  7. Blömeke, S., Kaiser, G. & Lehmann, R. (2008). Professionelle Kompetenz angehender Lehrerinnen und Lehrer [Professional competence of prospective teachers]. Münster, Germany: Waxmann.Google Scholar
  8. Blömeke, S., Kaiser, G. & Lehmann, R. (2010). TEDS-M 2008. Professionelle Kompetenz und Lerngelegenheiten angehender Mathematiklehrkräfte für die Sekundarstufe I im internationalen Vergleich [Professional competence and learning opportunities prospective mathematics teachers for secondary education in an international comparison]. Münster, Germany: Waxmann.Google Scholar
  9. Bohnsack, R., Pfaff, N. & Weller, W. (2010). Reconstructive research and documentary method in Brazilian and German educational science—An introduction. In R. Bohnsack, N. Pfaff & W. Weller (Eds.), Qualitative analysis and documentary method in international educational research (pp. 7–40). Opladen, Germany: Budrich.Google Scholar
  10. Borko, H. (2004). Professional development and teacher learning: Mapping the terrain. Educational Researcher, 33(8), 3–15.CrossRefGoogle Scholar
  11. Bourdieu, P. (1998). Practical reason: On the theory of action. Stanford, CA: Polity Press.Google Scholar
  12. Carey, S. & Smith, C. (1993). On understanding the nature of scientific knowledge. Educational Psychologist, 28(3), 235–251.CrossRefGoogle Scholar
  13. Chinn, C. A. & Brewer, W. F. (1998). An empirical test of a taxonomy of responses to anomalous data in science. Journal of Research in Science Teaching, 35(6), 623–654.CrossRefGoogle Scholar
  14. Chinn, C. A. & Malhotra, B. A. (2002). Epistemologically authentic inquiry in schools: A theoretical framework for evaluating inquiry tasks. Science Education, 86(2), 175–218.CrossRefGoogle Scholar
  15. Clough, M. P. (2006). Learners’ responses to the demands of conceptual change: Considerations for effective nature of science instruction. Science Education, 15, 463–494.CrossRefGoogle Scholar
  16. Collins, H. M. (1987). Certainty and the public understanding of science: Science on television. Social Studies of Science, 17(4), 689–713.CrossRefGoogle Scholar
  17. Duschl, R. & Grandy, R. (2013). Two views about explicitly teaching nature of science. Science & Education, 22, 2109–2139.CrossRefGoogle Scholar
  18. Ford, M. J. & Wargo, B. M. (2012). Dialogic framing of scientific content for conceptual and epistemic understanding. Science Education, 96(3), 369–391.CrossRefGoogle Scholar
  19. Grandy, R. & Duschl, R. A. (2007). Reconsidering the character and role of inquiry in school science: Analysis of a conference. Science & Education, 16(2), 141–166.CrossRefGoogle Scholar
  20. Guerra-Ramos, M. T. (2012). Teachers’ ideas about the nature of science: A critical analysis of research approaches and their contribution to pedagogical practice. Science & Education, 21(5), 631–655.CrossRefGoogle Scholar
  21. Gyllenpalm, J. & Wickman, P.-O. (2011). “Experiments” and the inquiry emphasis conflation in science teacher education. Science Education, 95(5), 908–926.CrossRefGoogle Scholar
  22. Heering, P. & Höttecke, D. (2014). Historical-investigative approaches in science teaching. In M. R. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 1473–1502). Dordrecht, Netherlands: Springer.CrossRefGoogle Scholar
  23. Henke, A. & Höttecke, D. (2013). Entwicklung von Schülervorstellungen zur Natur der Naturwissenschaften im Rahmen forschenden Lernens und historischer Fallstudien [Development of students’ conceptions of nature of science research-based learning in the context of historical and case studies]. In S. Bernholt (Ed.), Zur Didaktik der Chemie und Physik, GDCP-Jahrestagung in Hannover 2012 (pp. 398–400). Kiel, Germany: IPN.Google Scholar
  24. Henke, A. & Höttecke, D. (2014). Physics teachers’ challenges in using history and philosophy of science in teaching. Science & Education. Advance online publication. doi: 10.1007/s11191-014-9737-3.
  25. Hodson, D. (1993). Philosophic stance of secondary school science teachers, curriculum experiences, and children’s understanding of science: Some preliminary findings. Interchange, 24, 41–52.CrossRefGoogle Scholar
  26. Höttecke, D. (2013, June). A sketch of the problem of authentic inquiry-based learning form a history of science perspective. Paper presented at the Twelfth International History, Philosophy, Sociology & Science Teaching Conference (IHPST), Pittsburgh, PA.Google Scholar
  27. Höttecke, D., Henke, A. & Rieß, F. (2012). Implementing history and philosophy in science teaching—strategies, methods, results and experiences from the European Project HIPST. Science & Education, 21(9), 1233–1261.CrossRefGoogle Scholar
  28. Höttecke, D. & Rieß, F. (2007, June). How do physics teacher students understand the nature of science? An explorative study of a well informed investigational group. Paper presented at the Ninth International History, Philosophy, Sociology & Science Teaching Conference (IHPST), Calgary, Canada.Google Scholar
  29. Höttecke, D. & Silva, C. (2011). Why implementing history and philosophy in school science education is a challenge: An analysis of obstacles. Science & Education, 20(3), 293–316.CrossRefGoogle Scholar
  30. Jones, M. G. & Carter, G. (2007). Science teacher attitudes and beliefs. In K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 1067–1104). New York, NY: Routledge.Google Scholar
  31. Kang, N.-H. & Wallace, C. S. (2005). Secondary science teachers’ use of laboratory activities: Linking epistemological beliefs, goals, and practices. Science Education, 89(1), 141–165.CrossRefGoogle Scholar
  32. Kelle, U. & Kluge, S. (2010). Vom Einzelfall zum Typus [The individual case to the type]. Opladen, Germany: Lesek + Budrich.Google Scholar
  33. Kelly, G. J., Brown, C. & Crawford, T. (2000). Experiments, contingencies, and curriculum: Providing opportunities for learning through improvisation in science teaching. Science Education, 84(5), 624–657.CrossRefGoogle Scholar
  34. Kleickmann, T., Großschedl, J., Harms, U., Heinze, A., Herzog, S., Hohenstein, F., ... Zimmermann, F. (2014). Professionswissen von Lehramtsstudierenden der mathematisch-naturwissenschaftlichen Fächer – Testentwicklung im Rahmen des Projekts KiL [Professional knowledge of student teachers of mathematics and science subjects - test development within the project KiL]. Unterrichtswissenschaft, 42(3), 280–288.Google Scholar
  35. Kolstø, S. D. (2001). ‘To trust or not to trust, …’—pupils’ ways of judging information encountered in a socio-scientific issue. International Journal of Science Education, 23(9), 877–901.CrossRefGoogle Scholar
  36. Krüger, J., Ruhrig, J. & Höttecke, D. (2013). Lehrerperspektiven auf unsichere Evidenz II: Ergebnisse einer Gruppendiskussionsstudie [Teacher perspectives on uncertain evidence II: results of a focus group study]. In S. Bernholt (Ed.), Zur Didaktik der Chemie und Physik, GDCP-Jahrestagung in Hannover 2012 (pp. 728–790). Kiel, Germany: IPN.Google Scholar
  37. Kunter, M., Baumert, J., Blum, W., Klusmann, U., Krauss, S. & Neubrand, M. (Eds.). (2011). Professionelle Kompetenz von Lehrkräften: Ergebnisse des Forschungsprogramms COACTIV [Professional competence of teachers: results of the research program COACTIV]. Münster, Germany: Waxmann.Google Scholar
  38. Latour, B. (1987). Science in action: How to follow scientists and engineers through society. Cambridge, England: Harvard University Press.Google Scholar
  39. Lederman, N. G. (1999). Teachers’ understanding of the nature of science and classroom practice: Factors that facilitate or impede the relationship. Journal of Research in Science Teaching, 36(8), 916–929.CrossRefGoogle Scholar
  40. Lederman, N. G. & Abd-El-Khalick, F. (1998). Avoiding de-natured science: Activities that promote understandings of the nature of science. In W. McComas (Ed.), The nature of science in science education. Rationales and strategies (pp. 83–126). Dordrecht, Netherlands: Kluwer Academic Publishers.Google Scholar
  41. Lederman, J. S. & Lederman, N. G. (2012). Nature of scientific knowledge and scientific inquiry. In B. J. Fraser, K. G. Tobin & C. J. McRobbie (Eds.), Second international handbook of science education (pp. 335–359). Dordrecht, Netherlands: Springer.CrossRefGoogle Scholar
  42. Lederman, N. G. & Zeidler, D. L. (1987). Science teachers’ conceptions of the nature of science: Do they really influence teaching behaviour? Science Education, 71(5), 721–734.CrossRefGoogle Scholar
  43. Lindmeier, A. (2011). Modeling and measuring knowledge and competencies of teachers. A threefold domain-specific structure model for mathematics. Münster, Germany: Waxmann.Google Scholar
  44. Magnusson, J., Krajcik, J. & Borko, H. (1999). Nature, sources and development of pedagogical content knowledge for science teaching. In J. Gess-Newsome & N. G. Lederman (Eds.), Examining pedagogical content knowledge (pp. 95–132). Dordrecht, Germany: Kluwer.Google Scholar
  45. Mannheim, K., Kettler, D., Meja, V. & Stehr, N. (Eds.). (1980). Strukturen des Denkens [Structures of thought]. Frankfurt am Main, Germany: Suhrkamp.Google Scholar
  46. Mayring, P. (2010). Qualitative Inhaltsanalyse: Grundlagen und Techniken [Qualitative Content Analysis: Principles and Techniques]. Weinheim, Germany: Beltz.Google Scholar
  47. Müürsepp, P. (2006). The uncertainty of scientific knowledge. In M. Rahnfeld (Ed.), Gibt es sicheres Wissen? (pp. 81–90). Leipzig, Germany: Leipziger Uni-Verlag.Google Scholar
  48. Nott, M. & Wellington, J. (1996). When the black box springs open: Practical work in schools and the nature of science. International Journal of Science Education, 18(7), 807–818.CrossRefGoogle Scholar
  49. Oliveira, A. W., Akerson, V. L., Colak, H., Pongsanon, K. & Genel, A. (2012). The implicit communication of nature of science and epistemology during inquiry discussion. Science Education, 96(4), 652–684.CrossRefGoogle Scholar
  50. Oreskes, N. & Conway, E. M. (2010). Merchants of doubt. How a handful of scientists obscured the truth on issues from tobacco smoke to global warming. New York, NY: Bloomsbury Press.Google Scholar
  51. Pajares, M. F. (1992). Teachers’ beliefs and educational research: Cleaning up a messy construct. Revue of Educational Research, 62(3), 307–332.CrossRefGoogle Scholar
  52. Pickering, A. (1993). Living in the material world: On realism and experimental practice. In D. Gooding, T. Pinch & S. Schaffer (Eds.), The uses of experiment. Studies in the natural sciences (pp. 275–297). Cambridge, England: Cambridge University Press.Google Scholar
  53. Roberts, D. A. (2007). Scientific literacy/science literacy. In S. K. Abell & N. G. Ledermann (Eds.), Handbook of research on science education (pp. 729–780). Mahwa, India: Erlbaum.Google Scholar
  54. Ruhrig, J. & Höttecke, D. (2013, June). Science teachers’ practical epistemologies. Reconstructions of science teachers’ perspectives on uncertain evidence. Paper presented at the Twelfth International History, Philosophy, Sociology & Science Teaching Conference (IHPST), Pittsburgh, PA.Google Scholar
  55. Ruhrig, J. & Höttecke, D. (2015). Was, wenn das Experiment nicht klappt? Unsichere Evidenz als Lerngelegenheit nutzen [What to do, when practical work goes wrong? Uses of uncertain evidence for learning]. Unterricht Physik, 144, 32–35.Google Scholar
  56. Ruhrig, J., Ohlsen, M. & Höttecke, D. (2013). Lehrerperspektiven auf unsichere Evidenz I: Projektziele, -design und Erhebungsinstrumente [Teacher perspectives on uncertain evidence I: Objectives, design and survey instruments]. In S. Bernholt (Ed.), Zur Didaktik der Chemie und Physik, GDCP-Jahrestagung in Hannover 2012 (pp. 725–727). Kiel, Germany: IPN.Google Scholar
  57. Schoenfeld, A. H. (1998). Toward a theory of teaching-in-context. Issues in Education, 4(1), 1–94.CrossRefGoogle Scholar
  58. Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Research, 15(2), 4–14.CrossRefGoogle Scholar
  59. Star, S. L. (1985). Scientific work and uncertainty. Social Studies of Science, 15, 391–427.CrossRefGoogle Scholar
  60. Törner, G., Polka, K. & Wüllner, S. (2005). Die fachmathematische Struktur als “Auffangnetz” - Analyse einer Unterrichtssituation im Lichte von Schoenfelds Theorie “Teaching-In-Context”. In C. Kaune, I. Schwank & J. Sjuts, (Eds.), Mathematikdidaktik im Wissenschaftsgefüge: Zum Verstehen und Unterrichten mathematischen Denkens. Bd.2. Osnabrück, Germany: Forschungsinst. F. Mathem.Google Scholar
  61. von Driel, J. H., Verloop, N. & de Vos, W. (1998). Developing science teacher’s pedagogical content knowledge. Journal of Research in Science Teaching, 36(6), 673–695.CrossRefGoogle Scholar
  62. von Someren, M. W., Barnard, Y. F. & Sandberg, J. A. C. (1994). The think aloud method. London, England: Academic.Google Scholar
  63. Wahbeh, N. & Abd-El-Khalick, F. (2014). Revisiting the translation of nature of science understanding into instructional practice: Teachers’ nature of science pedagogical content knowledge. International Journal of Science Education, 36(3), 425–466.CrossRefGoogle Scholar
  64. Weinert, F. E. (2001). Leistungsmessung in Schulen. Weinheim, Germany: Beltz.Google Scholar
  65. Ziman, J. (2000). Real science. What it is, and what it means. Cambridge, England: Cambridge University Press.CrossRefGoogle Scholar

Copyright information

© Ministry of Science and Technology, Taiwan 2015

Authors and Affiliations

  1. 1.University of HamburgHamburgGermany
  2. 2.University of HamburgHamburgGermany

Personalised recommendations