Advertisement

Early Career Mathematics Teachers’ General Pedagogical Knowledge and Skills: Do Teacher Education, Teaching Experience, and Working Conditions Make a Difference?

  • Johannes KönigEmail author
  • Sigrid Blömeke
  • Gabriele Kaiser
Article

Abstract

We examined several facets of general pedagogical knowledge and skills of early career mathematics teachers, asking how they are associated with characteristics of teacher education, teaching experience, and working conditions. Declarative general pedagogical knowledge (GPK) was assessed via a paper-and-pencil test, while early career teachers’ skills to perceive and interpret classroom situations were assessed via video-vignettes. Data from a follow-up study of TEDS-M Germany in 2012 were used, including a sample of 278 early career middle school teachers of mathematics. While teachers’ declarative knowledge can be predicted by teacher education grades, teachers’ skill to interpret classroom situations presented by videos can be predicted by their amount of time spent on teaching relative to their overall working time, which is interpreted as a form of deliberate practice. Different competence profiles of pedagogical knowledge and skills are identified via latent-class analysis. Besides teaching experience, profiles are associated with generic teaching challenges (motivating students, disruptive student behaviour) perceived by the teachers. Implications of findings for professional development of early career teachers are discussed.

Keywords

Assessment Competence General pedagogical knowledge Teacher Teacher education Video-vignettes Latent-class analysis Competence profile 

Supplementary material

10763_2015_9618_MOESM1_ESM.docx (112 kb)
ESM 1 (DOCX 111 kb)

References

  1. Anderson, L. W. & Krathwohl, D. R. (Eds.). (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom’s taxonomy of educational objectives. New York, NY: Longman.Google Scholar
  2. Baumert, J., Kunter, M., Blum, W., Brunner, M., Voss, T., Jordan, A., Tsai, Y-M. (2010). Teachers’ mathematical knowledge, cognitive activation in the classroom, and student progress. American Educational Research Journal, 47(1), 133–180.Google Scholar
  3. Bereiter, C. & Scardamalia, M. (1993). Surpassing ourselves. Chicago, IL: Open Court.Google Scholar
  4. Berliner, D. C. (1992). The nature of expertise in teaching. In F. K. Oser, A. Dick & J.-L. Patry (Eds.), Effective and responsible teaching (Chap. 15) (pp. 227–248). San Francisco, CA: Jossey-Bass.Google Scholar
  5. Berliner, D. C. (2001). Learning about and learning from expert teachers. International Journal of Educational Research, 35(5), 463–482.CrossRefGoogle Scholar
  6. Berliner, D. C. (2004). Describing the behavior and documenting the accomplishments of expert teachers. Bulletin of Science, Technology and Society, 24(3), 200–212.CrossRefGoogle Scholar
  7. Blömeke, S. & Klein, P. (2013). When is a school environment perceived as supportive by beginning mathematics teachers? Effects of leadership, trust, autonomy and appraisal on teaching quality. International Journal of Science and Mathematics Education, 11, 1029–1048.Google Scholar
  8. Blömeke, S., Gustafsson, J.-E. & Shavelson, R. (2015). Beyond dichotomies: Competence viewed as a continuum. Zeitschrift für Psychologie (in press).Google Scholar
  9. Bromme, R. (1992). Der Lehrer als Experte: zur Psychologie des professionellen Wissens [The teacher as expert: The psychology of professional knowledge]. Bern, Switzerland: Huber.Google Scholar
  10. Bromme, R. (2001). Teacher expertise. In N. J. Smelser & P. B. Baltes (Eds.), International encyclopedia of the social and behavioral sciences (pp. 15459–15465). Amsterdam, The Netherlands: Elsevier.CrossRefGoogle Scholar
  11. Clausen, M., Reusser, K. & Klieme, E. (2003). Unterrichtsqualität auf der Basis hoch-inferenter Unterrichtsbeurteilungen: Ein Vergleich zwischen Deutschland und der deutschsprachigen Schweiz. Unterrichtswissenschaft, 31, 122–141.Google Scholar
  12. Dehoney, J. (1995). Cognitive task analysis: Implications for the theory and practice of instructional design. Proceedings of the Annual National Convention of the Association for Educational Communications and Technology (AECT). Retrieved from ERIC database. (ED383294).Google Scholar
  13. Dunn, T. G. & Shriner, C. (1999). Deliberate practice in teaching: What teachers do for self-improvement. Teaching and Teacher Education, 15(6), 631–651.Google Scholar
  14. Ericsson, K. A., Krampe, R. T. & Tesch-Romer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100, 363–406.CrossRefGoogle Scholar
  15. Gruber, H. & Rehrl, M. (2005). Praktikum statt Theorie? Eine Analyse relevanten Wissens zum Aufbau pädagogischer Handlungskompetenz. [Practicum instead of Theory? Analysis of relevant Knowledge for the Acquisition of Pedagogical Performance]. Research report 15 of the Pedagogical Institute, University of Regensburg, Germany.Google Scholar
  16. Hackl, B. (2004). Explizites und implizites Wissen. Menschliches Handeln im Spannungsfeld von Intentionalität, Rationalität und praktischem Können. In B. Hackl & G. H. Neuweg (Eds.), Zur Professionalisierung pädagogischen Handelns (pp. 69–112). Münster, Germany.Google Scholar
  17. Hart, L. C., Alston, A. S. & Murata, A. (Eds.). (2011). Lesson study research and practice in mathematics education. New York, NY: Springer.Google Scholar
  18. Hill, H. C. (2010). The nature and predictors of elementary teachers’ mathematical knowledge for teaching. Journal for Research in Mathematics Education, 41(5), 513–545.Google Scholar
  19. Hobfoll, S. E. & Freedy, J. (1993). Conservation of resources: A general stress theory applied to burnout. In W. B. Schaufeli, C. Maslach & T. Marek (Eds.), Professional burnout: Recent developments in theory and research (pp. 115–133). Philadelphia: Taylor & Francis.Google Scholar
  20. Kaiser, G., Benthien, J., Döhrmann, M., König, J. & Blömeke, S. (2013). Expert ratings as an instrument for validating results of video-based testing. In A. Lindmeier & A. Heinze (Hrsg.). Proceedings of the 37th conference of the international group for the psychology of mathematics education. (Bd. 1). Kiel, Germany: PME.Google Scholar
  21. Keller-Schneider, M. & Hericks, U. (2011). Forschungen zum Berufseinstieg. Übergang von der Ausbildung in den Beruf [Research on Entering the Profession. Transition from Training into Profession]. In E. Terhart, H. Bennewitz & M. Rothland (Eds.), Handbuch der Forschung zum Lehrerberuf [Handbook on the Research of Teachers] (pp. 296–313). Münster, Germany: Waxmann.Google Scholar
  22. Kersting, N. B., Givvin, K. B., Thompson, B. J., Santagata, R. & Stigler, J. W. (2012). Measuring usable knowledge teachers’ analyses of mathematics classroom videos predict teaching quality and student learning. American Educational Research Journal, 49(3), 568–589.Google Scholar
  23. Klein, G. A. & Hoffman, R. R. (1993). Seeing the invisible: Perceptual–cognitive aspects of expertise. In M. Rabinowitz (Ed.), Cognitive science foundations of instruction (pp. 203–226). Hillsdale, MI: Erlbaum.Google Scholar
  24. König, J. (2013). First comes the theory, then the practice? On the acquisition of general pedagogical knowledge during initial teacher education. International Journal of Science and Mathematics Education, 11(4), 999–1028.Google Scholar
  25. Konig, J. (2014). Designing an international instrument to assess teachers’ general pedagogical knowledge (GPK): Review of studies, considerations, and recommendations. Technical paper prepared for the ITEL project. Paris: OECD.Google Scholar
  26. König, J. & Blömeke, S. (2012). Future teachers’ general pedagogical knowledge from a comparative perspective. Does school experience matter? ZDM - The International Journal on Mathematics Education, 44(3), 341–354.Google Scholar
  27. König, J. & Lebens, M. (2012). Classroom management expertise (CME) von Lehrkräften messen: Überlegungen zur Testung mithilfe von Videovignetten und erste empirische Befunde. Lehrerbildung auf dem Prüfstand, 5(1), 3–29.Google Scholar
  28. König, J. & Blömeke, S. (2013). Preparing teachers of mathematics in Germany. In J. Schwille, L. Ingvarson & R. Holdgreve-Resendez (Eds.), TEDS-M encyclopaedia. A guide to teacher education context, structure and quality assurance in 17 countries. Findings from the IEA teacher education and development study in mathematics (TEDS-M) (pp. 100–115). Amsterdam: IEA.Google Scholar
  29. König, J., Blömeke, S., Paine, L., Schmidt, B. & Hsieh, F-J. (2011). General pedagogical knowledge of future middle school teachers. On the complex ecology of teacher education in the United States, Germany, and Taiwan. Journal of Teacher Education, 62(2), 188–201.Google Scholar
  30. König, J., Blömeke, S., Klein, P., Suhl, U., Busse, A. & Kaiser, G. (2014). Is teachers' general pedagogical knowledge a premise for noticing and interpreting classroom situations? A video-based assessment approach. Teaching and Teacher Education, 38, 76–88.Google Scholar
  31. Kouzes, J. M. & Posner, B. Z. (1999). Encouraging the heart: A leader’s guide to rewarding and recognizing others. San Francisco, CA: Jossey-Bass.Google Scholar
  32. Magidson, J. & Vermunt, J. K. (2004). Latent class analysis. In D. Kaplan (Ed.), The Sage handbook of quantitative methodology for the social sciences (Chap. 10) (pp. 175–198). Thousand Oaks, CA: Sage.Google Scholar
  33. McCormack, A., Gore, J. & Thomas, K. (2006). Early career teacher professional learning. Asia-Pacific Journal of Teacher Education, 34(1), 95–113.CrossRefGoogle Scholar
  34. Muthén, B. O. & Muthén, L. K. (1998–2006). Mplus (Version 4.2) [Computer software]. Los Angeles, CA.Google Scholar
  35. Nylund, K. L., Asparouhov, T. & Muthén, B. O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling: A Multidisciplinary Journal, 14, 535–569.CrossRefGoogle Scholar
  36. Putnam, R. T. (1987). Structuring and adjusting content for students: A study of live and simulated tutoring of addition. American Educational Research Journal, 24, 13–48.CrossRefGoogle Scholar
  37. Rost, J. & Georg, W. (1991). Alternative Skalierungsmöglichkeiten zur klassischen Testtheorie am Beispiel der Skala, Jugendzentrismus“. ZA-information, 28, 52–74.Google Scholar
  38. Sabers, D. S., Cushing, K. S. & Berliner, D. C. (1991). Differences among teachers in a task characterized by simultaneity, multidimensionality, and immediacy. American Educational Research Journal, 28, 63–88.Google Scholar
  39. Schoenfeld, A. H. (2011). Reflections on teacher expertise. In Y. Li & G. Kaiser (Eds.), Expertise in mathematics instruction (pp. 327–341). US: Springer.Google Scholar
  40. Schön, D.A. (1983). The reflective practitioner—how professionals think in action. New York, NY, Basis Books.Google Scholar
  41. Shavelson, R. J. (2010). On the measurement of competency. Empirical Research in Vocational Education and Training, 2(1), 82–103.Google Scholar
  42. Sherin, M., Jacobs, V. & Philipp, R. (Eds.). (2011). Mathematics teacher noticing: Seeing through teachers' eyes. Routledge.Google Scholar
  43. Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Research, 57, 1–22.Google Scholar
  44. Tatto, M. T., Schwille, J., Senk, S., Ingvarson, L., Peck, R. & Rowley, G. (2008). Teacher Education and Development Study in Mathematics (TEDS-M): Conceptual framework. East Lansing: Michigan State University.Google Scholar
  45. Valentine, J., Clark, D., Hackmann, D. & Petzko, V. (2004). Leadership for highly successful middle level schools. Volume II: A national study of leadership in middle level schools. Reston, VA: National Association of Secondary School Principals.Google Scholar
  46. van Es, E. A. & Sherin, M. G. (2002). Learning to notice: Scaffolding new teachers’ interpretations of classroom interactions. Journal of Technology and Teacher Education, 10(4), 571–596.Google Scholar
  47. von Eye, A. & Bergman, L. R. (2003). Research strategies in developmental psychopathology: Dimensional identity and the person-oriented approach. Development and Psychopathology, 15(3), 553–580.Google Scholar
  48. Weinert, F. E. (2001). A concept of competence: A conceptual clarification. In D. S. Rychen & L. H. Salganik (Eds.), Defining and selecting key competencies (pp. 45–65). Göttingen, Germany: Hogrefe.Google Scholar
  49. Wu, M. L., Adams, R. J. & Wilson, M. R. (1997). ConQuest: Multi-aspect test software (computer program). Camberwell: Australian Council for Educational Research.Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2015

Authors and Affiliations

  • Johannes König
    • 1
    Email author
  • Sigrid Blömeke
    • 2
  • Gabriele Kaiser
    • 3
  1. 1.University of CologneCologneGermany
  2. 2.University of OsloOsloNorway
  3. 3.University of HamburgHamburgGermany

Personalised recommendations