Online Physics Lab Exercises—a Binational Study on the Transfer of Teaching Resources

  • Heike TheyßenEmail author
  • Sarah Struzyna
  • Elliot Mylott
  • Ralf Widenhorn


In this paper, we present the design and the results of a comparative study that evaluated the success of a transfer of an online-teaching resource between two universities, one in Germany and one in the USA. The teaching resource is an online physics lab that has been used in the physics education of medical students in Germany since 2003. The online lab covers geometrical optics and the optics of the human eye using interactive screen experiments. It was translated and transferred to a university in the USA where it was used and evaluated with a group of pre-health students. In a cross-national study, students’ backgrounds (demographic data, selected cognitive abilities, previous knowledge, and self-concept in physics), students’ attitudes towards the online lab, and their learning gain were compared. The results show significant differences between the German and the US cohorts with regard to students’ backgrounds. Despite these differences, the outcomes are similar, with slightly higher leaning gains for the US students. Students’ attitudes towards the online lab are similar in both countries but tend to be more positive among the US students. The results indicate that the transfer of the online lab to another educational system was successful.


Cross-national study Interactive screen experiment Online lab Optics Physics education Pre-health curriculum Medicine Undergraduate education 



We would like to thank Christin Heinze (Heinrich-Heine University of Düsseldorf) for the technical support, Dieter Schumacher (Heinrich-Heine University of Düsseldorf) for the close cooperation in the development and evaluation of the online labs, and Grace van Ness (Portland State University) for supporting the pre- and post-tests. The development of the online labs was supported by the German Research Foundation ( The study at PSU was supported by grants (DUE-1141078 and DUE-1431447) from the National Science Foundation.

For access to the online lab, please contact or


  1. Association of American Medical Colleges (2001). Report IV - Contemporary Issues in Medicine: Basic Science and Clinical Research. Retrieved from
  2. Association of American Medical Colleges (2009). Scientific foundations for future physicians. Retrieved from
  3. Abrahams, I. & Millar, R. (2008). Does practical work really work? A study of the effectiveness of practical work as a teaching and learning method in school science. International Journal of Science Education, 30(14), 1945–1969. doi: 10.1080/09500690701749305.CrossRefGoogle Scholar
  4. Adams, W. K., Alhadlaq, H., Malley, C. V., Perkins, K. K., Olson, J., Alshaya, F., ... Wieman, C. E. (2010). Making on-line science course materials easily translatable and accessible worldwide: Challenges and solutions. Journal of Science Education and Technology, 21(1), 1–10. doi: 10.1007/s10956-010-9275-y.CrossRefGoogle Scholar
  5. Allen, I. E. & Seaman, J. (2011). Going the distance: Online education in the United States, 2011. Retrieved from
  6. Areepattamannil, S. & Kaur, B. (2013). Factors predicting science achievement of immigrant and non-immigrant students: A multilevel analysis. International Journal of Science and Mathematical Education, 11(5), 1183–1207. doi: 10.1007/s10763-012-9369-5.CrossRefGoogle Scholar
  7. Beitler, M. A. & Mitlacher, L. W. (2007). Information sharing, self-directed learning and its implications for workplace learning: A comparison of business student attitudes in Germany and the USA. Journal of Workplace Learning, 19(8), 526–536. doi: 10.1108/13665620710831191.CrossRefGoogle Scholar
  8. Brell (2008). Lernmedien und Lernerfolg—Reale und virtuelle Materialien im Physikunterricht. Berlin: Logos.Google Scholar
  9. Christensen, W., Johnson, J. K., Van Ness, G. R., Mylott, E., Dunlap, J. C., Anderson, E. A. & Widenhorn, R. (2013). Developing and Assessing Curriculum on the Physics of Medical Instruments. CBE—Life Sciences Education, 12, 250–261.Google Scholar
  10. Christenson, N. (2001). Medical physics: The perfect intermediate level physics class. European Journal of Physics, 22, 421–427.Google Scholar
  11. Cohen, J. (1988). Statistical power analysis for the behavioral sciences. New Jersey, NJ: Erlbaum.Google Scholar
  12. Feisel, L. D. & Rosa, A. J. (2005). The role of the laboratory in undergraduate engineering education. Journal of Engineering Education, 94(1), 121–130.CrossRefGoogle Scholar
  13. Finkelstein, N. D., Adams, W. K., Keller, C. J., Kohl, P. B., Perkins, K. K., Podolefsky, N. S. & Reid, S. (2005). When learning about the real world is better done virtually: A study of substituting computer simulations for laboratory equipment. Physical Review Special Topics - Physics Education Research, 1. doi: 10.1103/PhysRevSTPER.1.010103.
  14. Hansford, B. C. & Hattie, J. A. (1982). The relationship between self and achievement/performance measures. Review of Educational Research, 52, 123–142.CrossRefGoogle Scholar
  15. Hattie, J. A. C. (2009). Visible learning. A synthesis of over 800 meta-analyses relating to achievement. New York, NY: Routledge Taylor & Francis Group.Google Scholar
  16. Hoeling, B. (2012). Interactive online optics modules for the college physics course. American Journal of Physics, 80, 334–338. doi: 10.1119/1.3677652.
  17. Hofstein, A. & Lunetta, V. N. (2004). The laboratory in science education: Foundations for the twenty-first century. Science Education, 88(1), 28–54.CrossRefGoogle Scholar
  18. Hüther, M. (2005). Evaluation einer hypermedialen Lernumgebung zum Thema Gasgesetze—Eine Studie im Rahmen des Physikpraktikums für Studierende der Medizin. Berlin, Germany: Logos.Google Scholar
  19. Institute of Medicine (2001). Crossing the quality chasm: A new health system for the 21st century. Retrieved from
  20. Kamisah, O. & Lee, T. T. (2013). Impact of interactive multimedia module with pedagogical agents on students’ understanding and motivation in the learning of electrochemistry. International Journal of Science and Mathematics Education, 12(2), 395–421. doi: 10.1007/s10763-013-9407-y.Google Scholar
  21. Kirstein, J. (2001). The educational value of “Interactive Screen Experiments”—A new representation of experiments with multimedia technology. In D. Psillos, P. Kariotoglou, V. Tselfes, G. Biskian, G. Fassoulopoulos, E. Hatzikraniotis & M. Kallery (Eds.), Proceedings of the Third International Conference on Science Education Research in the Knowledge Based Society (pp. 468–470). Thessaloniki: Art of Text.Google Scholar
  22. Krusberg, Z. A. C. (2007). Emerging technologies in physics education. Journal of Science Education and Technology, 16(5), 401–411. doi: 10.1007/s10956-007-9068-0.CrossRefGoogle Scholar
  23. Lawley, T. J., Saxton, J. F. & Johns, M. M. E. (2005). Medical education: Time for reform. Transactions of the American Clinical and Climatological Association, 116, 311–320.Google Scholar
  24. Ma, J. & Nickerson, J. V. (2006). Hands-on, simulated, and remote laboratories: A comparative literature review. ACM Computing Surveys, 38(3), Article 7. Retrieved from
  25. Means, B., Toyama, Y., Murphy, R., Bakia, M. & Jones, K. (2010). Evaluation of evidence-based practices in online learning: A meta-analysis and review of online learning studies. Washington, D.C.: U.S. Department of Education.Google Scholar
  26. Meredith, D. C. & Redish, E. F. (2013). Reinventing physics for life-sciences majors. Physics Today, 66(7), 38.CrossRefGoogle Scholar
  27. Millar, R., Tiberghien, A. & Maréchal, J.-F. (2002). Varieties of labwork: A way of profiling labwork tasks. In D. Psillos & H. Niedderer (Eds.), Teaching and learning in the science laboratory (pp. 9–20). Dordrecht: Kluwer.Google Scholar
  28. Organisation for Economic Co-operation and Development (2007a). PISA 2006: Naturwissenschaftliche Kompetenzen für die Welt von morgen. Kurzzusammenfassung. Retrieved from
  29. Organisation for Economic Co-operation and Development (2007b). PISA 2006: Science Competencies for Tomorrow's World: Volume 1: Analysis. Paris, France: Author.Google Scholar
  30. Organisation for Economic Co-operation and Development (2010). PISA 2009 results: What students know and can do. Student performance in reading, mathematics and science (Volume I). Retrieved from
  31. Plomer, M. (2001). Physik physiologisch passend praktiziert: Eine Studie zur Lernwirksamkeit. Berlin: Logos.Google Scholar
  32. Psillos, D. & Niedderer, H. (Eds.). (2002). Teaching and learning in the science laboratory. Dordrecht: Kluwer.Google Scholar
  33. Reagan, A. M. (2012). Online introductory physics labs: Status and methods. Journal of the Washington Academy of Sciences, 98(1),31–46. Retrieved from
  34. Schreiber, N. (2012). Diagnostik experimenteller Kompetenz—Validierung technologiegestützter Testverfahren im Rahmen eines Kompetenzstrukturmodells. Berlin: Logos.Google Scholar
  35. Séré, M. (2002). Towards targeted labwork. In D. Psillos & H. Niedderer (Eds.), Teaching and learning in the science laboratory (pp. 255–259). Dordrecht: Kluver.Google Scholar
  36. Theyßen, H. (2006). Students’ Attitudes Towards the Hypermedia Learning Environment “Physics for Medical Students”. European Journal of Open, Distance and ELearning 2006/I, Retrieved from
  37. Theyßen, H. & Hüther, M. (2007). Evaluation of the Hypermedia Learning Environment “Physics for Medical Students” within two different settings. In R. Pintó & D. Couso (Eds.), Contributions from Science Education Research (pp. 477–487). Dordrecht, Netherlands: Springer.Google Scholar
  38. Theyßen, H., v. Aufschnaiter, S. & Schumacher, D. (2002). Development and evaluation of a laboratory course in physics for medical students. In D. Psillos & H. Niederrer (Eds.), Teaching and Learning in the Science Laboratory (pp. 91–104). Dordrecht, Netherlands: Kluwer.Google Scholar
  39. Tighezza, M. (2014). Modeling relationships among learning, attitude, self-perception, and science achievement for grade 8 Saudi students. International Journal of Science and Mathematical Education, 12(4), 721–740. doi: 10.1007/s10763-013-9426-8.CrossRefGoogle Scholar
  40. Treagust, D. F., Chandrasegaran, A. L., Crowley, C., Yung, B. H. W., Cheong, I. P. A. & Othman, J. (2010). Evaluating students’ understanding of kinetic particle theory concepts relating to the states of matter, changes of state and diffusion: A cross-national study. International Journal of Science and Mathematics Education, 8(1), 141–164. doi: 10.1007/s10763-009-9166-y.CrossRefGoogle Scholar
  41. Ucke, C. (1979). Augenmodell. In Deutsche Physikalische Gesellschaft, Fachverband Didaktik der Physik (Ed.), Didaktik der Physik: Vorträge-Physikertagung 1979 Giessen (pp. 259–260). Bad Honnef: DPG.Google Scholar
  42. Valentine, J. C., DuBois, D. L. & Cooper, H. (2004). The relation between self- beliefs and academic achievement: A meta-analytic review. Educational Psychologist, 39(2), 111–133.CrossRefGoogle Scholar
  43. Van Ness, G. R. & Widenhorn, R (2012). Engaging the community through an undergraduate biomedical physics course. American Journal of Physics, 80, 1094–1098.Google Scholar
  44. Weiß, R. H. (2006). Grundintelligenztest Skala 2—Revision (2006). Göttingen: Hogrefe.Google Scholar
  45. Welzel, M., Haller, K., Bandiera, M., Hammelev, D., Kouramas, P., Niedderer, H.,... von Aufschnaiter, S. (1998). Ziele, die Lehrende mit experimentellen Arbeiten in der naturwissenschaftlichen Ausbildung verbinden—Ergebnisse einer europäischen Umfrage. Zeitschrift für Didaktik der Naturwissenschaften, 4(1), 29–44.Google Scholar
  46. Yang, K.-Y. & Heh, J.-S. (2007). The impact of Internet virtual physics laboratory instruction on the achievement in physics, science process skills and computer attitudes of 10th-grade students. Journal of Science Education and Technology, 16(5), 451–461. doi: 10.1007/s10956-007-9062-6.CrossRefGoogle Scholar
  47. Yip, D. Y. & Tsang, W. K. (2007). Evaluation of the effects of the medium of instruction on science learning of Hong Kong secondary students: Students’ self-concept in science. International Journal of Science and Mathematics Education, 5(3), 393–413. doi: 10.1007/s10763-006-9043-x.CrossRefGoogle Scholar

Copyright information

© Ministry of Science and Technology, Taiwan 2015

Authors and Affiliations

  • Heike Theyßen
    • 1
    Email author
  • Sarah Struzyna
    • 1
  • Elliot Mylott
    • 2
  • Ralf Widenhorn
    • 2
  1. 1.Faculty of Physics, Physics educationUniversity of Duisburg-EssenEssenGermany
  2. 2.Physics DepartmentPortland State UniversityPortlandUSA

Personalised recommendations