Advertisement

THE COMPETENCE OF MODELLING IN LEARNING CHEMICAL CHANGE: A STUDY WITH SECONDARY SCHOOL STUDENTS

  • José Mª OlivaEmail author
  • María del Mar Aragón
  • Josefa Cuesta
Article

Abstract

The competence of modelling as part of learning about chemical change is analysed in a sample of 35 secondary students, ages 14 – 15 years, during their study of a curricular unit on this topic. The teaching approach followed is model based, with frequent use of analogies and mechanical models (fruits and bowls, Lego pieces, balls of plasticine, discs of coloured card, etc.) as mediators between the students’ intuitive understanding and school science models. Qualitative and quantitative methods of data analysis were used, acquiring information through portfolios, interviews, the teacher’s diary, and audiotapes. The qualitative results allowed a set of 12 dimensions to be defined that were used to characterize and evaluate different aspects of the competence of modelling. The assessment of the students’ performance in each of these dimensions by means of a 4-level ordinal rubric allowed the data to be analysed quantitatively. The quantitative results showed the overall set of these dimensions to have construct validity, with 2 sub-constructs standing out: “Working with Models” and “The Nature of Models”. The students reached satisfactory levels of competence in both of these sub-constructs, particularly in the latter.

Keywords

chemical change competence of modelling learning and models modelling models nature of models working with models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acevedo, J. A. (2008). El estado actual de la naturaleza de la ciencia en la didáctica de las ciencias. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 5(2), 134–169.Google Scholar
  2. Abd-El-Khalick, F. & Lederman, N. G. (2000). Improving science teachers’ conceptions of nature of science: a critical review of the literature. International Journal of Science Education, 22(7), 665–701.CrossRefGoogle Scholar
  3. Al-Balushi, S. M. (2013). The relationship between learners’ distrust of scientific models, their spatial ability, and the vividness of their mental images. International Journal of Science and Mathematics Education, 11(3), 707–732.CrossRefGoogle Scholar
  4. Andersson, B. (1986). Pupils’ explanations of some aspects of chemical reactions. Science Education, 70(4), 549–563.Google Scholar
  5. Aragón, M.M. (2012). Aportaciones de la enseñanza con analogías al desarrollo del pensamiento modelizador de los alumnos acerca del cambio químico. (Unpublished PhD thesis). University of Cádiz, Spain.Google Scholar
  6. Aragón, M. M., Oliva, J. M. & Navarrete, A. (2013). Evolución de los modelos explicativos de los alumnos en torno al cambio químico a través de una propuesta didáctica con analogías. Enseñanza de las Ciencias, 31(2), 9–30.Google Scholar
  7. Barsalou, L. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22(4), 577–609.Google Scholar
  8. Camacho González, J. P., Jara Colicoy, N., Morales Orellana, C., Rubio García, N., Muñoz Guerrero, T. & Rodríguez Tirado, G. (2012). Los modelos explicativos del estudiantado acerca de la célula eucarionte animal. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 9(2), 196–212. Retrieved from: http://hdl.handle.net/10498/14729.Google Scholar
  9. Cardoso Mendonça, P. C. & Justi, R. (2011). Contributions of the model of modelling diagram to the learning of ionic bonding: analysis of a case study. Research in Science Education, 41(4), 479–503.Google Scholar
  10. De Jong, O. & Taber, K. (2007). Teaching and learning the many faces of chemistry. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 631–652). Mahwah, NJ: Erlbaum.Google Scholar
  11. diSessa, A. A. (2004). Metarepresentation: Native competence and targets for instruction. Cognition and Instruction, 22(3), 293–331.CrossRefGoogle Scholar
  12. Gabel, D. (1999). Improving teaching and learning through chemistry education research: a look to the future. Journal of Chemical Education, 76(4), 548–554.CrossRefGoogle Scholar
  13. Gilbert, J. K., Boulter, C. & Rutherford, M. (1998). Models in explanations, part 1: Horses for courses? International Journal of Science Education, 20(1), 83–97.CrossRefGoogle Scholar
  14. Gilbert, J. K. & Treagust, D. (2009). Introduction: Macro, submicro and symbolic representations and the relationship between them: Key models in chemical education. In J. K. Gilbert & D. Treagust (Eds.), Multiple representations in chemical education (pp. 1–8). Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
  15. Gobert, J. & Discenna, J. (1997). The relationship between students’ epistemologies and model-based reasoning. Kalamazoo, MI: Western Michigan University, Department of Science Studies.Google Scholar
  16. Gobert, J., O’Dwyer, L., Horwitz, P., Buckley, B., Levy, S. T. & Wilensky, U. (2011). Examining the relationship between students’ epistemologies of models and conceptual learning in three science domains: Biology, Physics, & Chemistry. International Journal of Science Education, 33(5), 653–684.CrossRefGoogle Scholar
  17. Grosslight, L., Unger, C., Jay, E. & Smith, C. (1991). Understanding models and their use in science conceptions of middle and high school teachers and experts. Journal of Research in Science Teaching, 28(9), 799–882.CrossRefGoogle Scholar
  18. Halloun, I. (1996). Schematica modelling for meaningful learning of physics. Journal of Research in Science Teaching, 33(9), 1019–1041.CrossRefGoogle Scholar
  19. Halloun, I. (2007). Mediated modeling in science education. Science & Education, 16, 653–697.CrossRefGoogle Scholar
  20. Harrison, A. G. & Treagust, D. F. (2000). A typology of school science models. International Journal of Science Education, 22(9), 1011–1026.CrossRefGoogle Scholar
  21. Hodson, D. (1992). In search of a meaningful relationship: An exploration of some issues relating to integration in science and science education. International Journal of Science Education, 14(5), 541–566.CrossRefGoogle Scholar
  22. Hokayen, H. & Schwarz, C. (2014). Engaging fifth graders in scientific modeling to learn about evaporation and condensation. International Journal of Science and Mathematics Education, 12(1), 49–72.CrossRefGoogle Scholar
  23. Ingham, A. M. & Gilbert, J. K. (1991). The use of analogue models by students of chemistry at higher education level. International Journal of Science Education, 22(9), 1011–1026.Google Scholar
  24. Jensen, W. B. (1998). Logic, history and the chemistry textbook. Journal of Chemical Education, 75, 817–828.CrossRefGoogle Scholar
  25. Johnstone, A. H. (1982). Macro and micro chemistry. School Science Review, 64, 295–305.Google Scholar
  26. Justi, R. (2006). La enseñanza de ciencias basada en la elaboración de modelos. Enseñanza de las Ciencias, 24(2), 173–184.Google Scholar
  27. Justi, R. (2009). Learning how to model in science classroom: Key teacher’s role in supporting the development of students’ modelling skills. Educacion Quimica, 20(1), 32–40.Google Scholar
  28. Justi, R. & Gilbert, J. K. (2002). Modelling teachers’ views on the nature of modelling, and implications for the education of modellers. International Journal of Science Education, 24(4), 369–387.CrossRefGoogle Scholar
  29. Kaberman, Z. & Dori, Y. J. (2009). Question posing, inquiry, and modeling skills of chemistry students in the case-based computerized laboratory environment. International Journal of Science and Mathematics Education, 7(3), 597–625.Google Scholar
  30. Keig, P. F. & Rubba, P. A. (1993). Traslations of representations of the structure of matter and its relationship to reasoning, gender, spatial reasoning, and specific prior knowledge. Journal of Research in Science Teaching, 30(8), 883–903.Google Scholar
  31. Kozma, R. B. & Rusell, J. (1997). Multimedia and understanding: Expert and novices responses to different representations of chemical phenomena. Journal of Research in Science Teaching, 34(9), 949–968.Google Scholar
  32. Kozma, R. & Russell, J. (2005). Students becoming chemists: Developing representational competence. In J. Gilbert (Ed.), Visualization in science education (pp. 121–146). London: Kluwer.CrossRefGoogle Scholar
  33. Lopes, J. B. & Costa, N. (2007). The evaluation of modelling competences: Difficulties and potentials for the learning of the sciences. International Journal of Science Education, 29(7), 811–851.CrossRefGoogle Scholar
  34. Madden, S. P., Jones, L. L. & Rahm, J. (2011). The role of multiple representations in the understanding of ideal gas problems. Chemistry Education Research and Practice, 12, 283–293.Google Scholar
  35. Merino, C. & Izquierdo, M. (2011). Aportes a la modelización según el cambio químico. Educacion Quimica, 22(3), 212–223.Google Scholar
  36. Nelson, P. G. (2002). Teaching chemistry progressively: From substances to atoms and molecules, to electrons and nuclei. Chemistry Education Research and Practice, 3, 215–228.CrossRefGoogle Scholar
  37. Nersessian, N. J. (2002). Maxwell and “the Method of Physical Analogy”: Model-based reasoning, generic abstraction, and conceptual change. In D. Malament (Ed.), Essays in the history and philosophy of science and mathematics (pp. 129–166). Lasalle, IL: Open Court.Google Scholar
  38. Oliva, J. M. & Aragón, M. M. (2009a). Aportaciones de las analogías al desarrollo del pensamiento modelizador de los alumnos en química. Educacion Quimica, 20(1), 41–54.Google Scholar
  39. Oliva, J. M. & Aragón, M. M. (2009b). Contribución del aprendizaje con analogías al pensamiento modelizador de los alumnos en ciencias: Marco teórico. Enseñanza de las Ciencias, 27(2), 195–208.Google Scholar
  40. Oversby, J. (1999). Assessment of modelling capability. Paper presented in Second International Conference of European Science Education Research Association. Kiel, Germany.Google Scholar
  41. Prins, G.T. (2010). Teaching and Learning of Modelling in Chemistry Education: Authentic Practices as Contexts for Learning. (Unpublished doctoral dissertation). Universiteit Utrecht.Google Scholar
  42. Raviolo, A., Garritz, A. & Sosa, P. (2011). Sustancia y reacción química como conceptos centrales en química. Una discusión conceptual, histórica y didáctica. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 8(3), 240–254. Retrieved from: http://hdl.handle.net/10498/14388.Google Scholar
  43. Schwarz, C. (1998). Developing students’ understanding of scientific modelling, (Unpublished doctoral dissertation). University of California, Berkeley.Google Scholar
  44. Schwarz, C. (2002). Is there a connection? The role of meta-modeling knowledge in learning with models. Proceedings of International Conference of Learning Sciences. Seatle, WA.Google Scholar
  45. Schwarz, C. & White (2005). Metamodeling knowledge: Developing students’ understanding of scientific modelling. Cognition and Instruction, 23(2), 165–205.CrossRefGoogle Scholar
  46. Sins, P. H. M., Savelsbergh, E. R., van Joolingen, W. R. & van Hout-Wolters, B. H. A. M. (2009). The relation between students’ epistemological understanding of computer models and their cognitive processing on a modelling task. International Journal of Science Education, 31(9), 1205–1229.Google Scholar
  47. Smith, C., Snir, J. & Raz, G. (2002). Can middle schoolers understand the particulate theory of matter as an explanatory model? An exploratory study. Paper presented at the American Educational Research Association meeting, New Orleans, LA.Google Scholar
  48. Solbes, J. (2013). Contribución de las cuestiones sociocientíficas al desarrollo del pensamiento crítico (I): Introducción. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 10(1), 1–10. Retrieved from: http://hdl.handle.net/10498/14993.Google Scholar
  49. Solsona, N., Izquierdo, M. & De Jong, O. (2003). Exploring the development of students’ conceptual profiles of chemical change. International Journal of Science Education, 25, 3–12.CrossRefGoogle Scholar
  50. Spence, I. & Ogilvie, J. C. (1973). A table of expected stress values for random in multidimensional scaling. Multivariate Behavioral Research, 8(4), 511–517.Google Scholar
  51. Taber, K. S. (2013). Revising the chemistry triplet: Drawing upon the nature of chemical knowledge and the psychology of learning to inform chemistry education. Chemistry Education Research and Practice, 14, 156–168.CrossRefGoogle Scholar
  52. Talanquer, V. (2011). Macro, submicro, and symbolic: The many faces of the chemistry ‘triplet’. International Journal of Science Education, 33(2), 179–195.CrossRefGoogle Scholar
  53. Treagust, D., Chittleborough, G. & Mamiala, T. (2002). Students’ understanding of the role of scientific models in learning science. International Journal of Science Education, 24(4), 357–368.CrossRefGoogle Scholar
  54. van Driel, J. H. & Verloop, N. (1999). Teachers’ knowledge and modelling in science. International Journal of Science Education, 21(11), 1141–1153.CrossRefGoogle Scholar
  55. Wei, S., Liu, X. & Jia, Y. (2013). Using Rasch measurement to validate the instrument of students’ understanding of models in science (SUMS). International Journal of Science and Mathematics Education, 12(5), 1067–1082.CrossRefGoogle Scholar

Copyright information

© Ministry of Science and Technology, Taiwan 2014

Authors and Affiliations

  • José Mª Oliva
    • 1
    Email author
  • María del Mar Aragón
    • 1
  • Josefa Cuesta
    • 1
  1. 1.Departamento de DidácticaUniversidad de CádizPuerto RealSpain

Personalised recommendations