Advertisement

STUDENTS’ UNDERSTANDING OF EQUILIBRIUM AND STABILITY: THE CASE OF DYNAMIC SYSTEMS

  • Michaël CanuEmail author
  • Cécile de Hosson
  • Mauricio Duque
Article

ABSTRACT

Engineering students in control courses have been observed to lack an understanding of equilibrium and stability, both of which are crucial concepts in this discipline. The introduction of these concepts is generally based on the study of classical examples from Newtonian mechanics supplemented with a control system. Equilibrium and stability are approached in different ways at the various stages of a typical engineering syllabus: at the beginning, they are mostly dealt with a static point of view, for example in mechanics, and are subsequently handled through dynamic analysis in control courses. In general, there is a little clarification of the differences between these concepts or the ways in which they are linked. We believe that this leads to much confusion and incomprehension among engineering students. Several studies have shown that students encounter difficulties when presented with simple familiar or academic static equilibrium cases in mechanics. Our study investigates students’ conceptions and misconceptions about equilibrium and stability through a series of questions about several innovative non-static situations. It reveals that the understanding of these notions is shaken when the systems being studied are placed in inertial or non-inertial moving reference frames. The students in our study were particularly uncertain about the existence of unstable equilibrium positions and had difficulty in differentiating between the two concepts. The results suggest that students use a velocity-based approach to explain such situations. A poor grasp of the above fundamental concepts may result from previous learning experiences. More specifically, certain difficulties seem to be directly linked to a lack of understanding of these concepts, while others are related to misconceptions arising from everyday experiences and the inappropriate use of physical examples in primary school.

Keywords

conceptions equilibrium stability students’ way of thinking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albanese, A., Danhoni Neves, C. M. & Vicentini, M. (1998). Students’ ideas about equilibrium, friction and dissipation. Acta Scientarium, 20(4), 461–472.Google Scholar
  2. Bonawitz, E. B., Lim, S. & Schulz, L. E. (2007). Weighing the evidence : Children’s naïve theories of balance affect their exploratory play. In 28th annual proceedings of the cognitive science society. Nashville, Tennessee: Lawrence Erlbaum Associates.Google Scholar
  3. Brewer, W. F. & Lambert, B. L. (1993). The theory-ladenness of observation and the theory-ladenness of the rest of the scientific process. In Proceedings of the fifteenth annual conference of the cognitive science society (pp. 254–259). Hillsdale, New Jersey.Google Scholar
  4. Champagne, A. B. & Bunce, D. M. (1985). Learning-theory-based science teaching. In S. M. Glynn, R. H. Yeany & B. K. Britton (Eds.), The psychology of learning science (p. 28). Hillsdale: Lawrence Erlbaum Associates.Google Scholar
  5. diSessa, A. (1988). Knowledge in pieces. In G. Forman & P. Putall (Eds.), Constructivism in the computer age (pp. 49–70). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.Google Scholar
  6. DiSessa, A. A. (1993). Towards an epistemology of physics. Cognition and Instruction, 10(2–3), 105–225.CrossRefGoogle Scholar
  7. Duhem, P. (1905). Les origines de la statique, tome I. In A. Hermann (Ed.), Paris: A. Hermann.Google Scholar
  8. Fauconnet, S. (1981). Etude de résolution de problèmes : quelques problèmes de même structure en physique. Unpublished doctoral dissertation, Paris Diderot- Paris 7.Google Scholar
  9. Flores-García, S., Alfaro-Avena, L. L., Chávez-Pierce, J. E., Luna-González, J. & González-Quezada, M. D. (2010). Students’ difficulties with tension in massless strings. American Journal of Physics, 78(12), 1412–1420.CrossRefGoogle Scholar
  10. Galili, I. & Hazan, A. (2000). Learners’ knowledge in optics: Interpretation, structure and analysis. International Journal of Science Education, 22(1), 57–88.CrossRefGoogle Scholar
  11. Gunstone, R. F. (1987). Student understanding in mechanics: a large population survey. American Journal of Physics, 55(8), 691–696.CrossRefGoogle Scholar
  12. Gunstone, R. F. & White, R. T. (1981). Understanding of gravity. Science Education, 65(3), 291–299.CrossRefGoogle Scholar
  13. Inhelder, B. & Piaget, J. (1955). De la logique de l’enfant à la logique de l’adolescent: essai sur la construction des structures opératoires formelles. Paris: PUF.Google Scholar
  14. Kariotoglou, P., Spyrtou, A. & Tselfes, V. (2009). How student teachers understand distance force interactions in different contexts. International Journal of Science and Mathematics Education, 7(5), 851–873.CrossRefGoogle Scholar
  15. Mathieu, J.-P., Kastler, A. & Fleury, P. (1991). Dictionnaire de physique. In Eyrolles (Ed.), (3rd ed.). Paris: Masson.Google Scholar
  16. Minstrell, J. (1992a). Facet of Student’s Thinking. Retrieved from http://depts.washington.edu/huntlab/diagnoser/facetcode.html
  17. Minstrell, J. (1992b). Facets of students’ knowledge and relevant instruction. In R. Duit Goldberg, R. Duit, F. Goldberg & H. Niedderer (Eds.), Research in physics learning: Theoretical issues and empirical studies (pp. 110–128). Kiel: IPNGoogle Scholar
  18. Minstrell, J. (2000). Student thinking and relative assessment: Creating a facet-base learning environment. In N. Raju, J. Pellegrino, M. Bertenthal, K. Mitchell, & L. Jones (Eds.), Grading the nation's report card: Research from the evaluation of NAEP (pp. 44–73). Washington, D.C: National Academy Press.Google Scholar
  19. Municio Pozo, J. I. & Gómez Crespo, M. A. (1998). Aprender y enseñar ciencia. Del conocimiento cotidiano al conocimiento cientifico. In J. Morata (Ed.), (5th ed.). Madrid: Morata.Google Scholar
  20. Newcomer, L. J. & Steif, S. P. (2008). Student thinking about static equilibrium: Insights from written explanations to a concept question. Journal of Engineering Education, 97, 481–490.CrossRefGoogle Scholar
  21. Ortiz, L. G., Heron, P. R. L. & Shaffer, P. S. (2005). Student understanding of static equilibrium: Predicting and accounting for balancing. American Journal of Physics, 73(6), 545–553. doi: 10.1119/1.1862640.CrossRefGoogle Scholar
  22. Palmer, D. H. (2001). Investigating the relationship between students’ multiple conceptions of action and reaction in cases of static equilibrium. Research in Science and Technical Education, 19(2). doi: 10.1080/0263514012008772
  23. Pedreros Martinéz, R. I. (2013). Significados de la Palabra Equilibrio en los Estudiantes de Primer Semestre de las Licenciaturas de Física, Diseño Tecnológico, Biología y Química. EDUCyT, 7(2), 66–77.Google Scholar
  24. Pozo, J. I., del Puy Pérez, M., Sanz, A. & Limón, M. (1992). Las ideas de los alumnos sobre la ciencia como teorías implícitas. Infancia Y Aprendizaje, (57), 3–22Google Scholar
  25. Rajamani, R. (2006). Vehicle dynamics and control. New York: Springer. Retrieved from http://books.google.com/books?hl=en\&lr=\&id=N0cVzjChUccC\&pgis=1.Google Scholar
  26. Renn, J. & Damerow, P. (2012). On the Book and the Handwritten Marginalia. In J. Renn, R. Schlögl, & B. F. Schutz (Eds.), The equilibrium controversy. Guidobaldo del Monte’s Critical Notes on the Mechanics of Jordanus and Benedetti and their Historical and Conceptual Background (Open Acces., p. 302). Berlin, Germany: Max Planck Institute for the History of Science.Google Scholar
  27. Serway, R. A. & Beichner, R. J. (2000). Physics for scientists and engineers (5th ed.). Orlando: Harcourt College Publishers.Google Scholar
  28. Sherin, B. (2006). Common sense clarified: The role of intuitive knowledge in physics problem solving. Journal of Research in Science Teaching, 43(6), 535–555.Google Scholar
  29. Siegler, R. S. & Chen, Z. (2002). Development of rules and strategies: Balancing the old and the new. Journal of Experimental Child Psychology, 81(4), 446–457. doi: 10.1006/jecp.2002.2666. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11890730.CrossRefGoogle Scholar
  30. Steif, P. S. & Dantzler, J. A. (2005). A statics concept inventory: Development and psychometric analysis. Journal of Engineering Education, 94(4), 363.Google Scholar
  31. Solaz-Portolés, J. & López, V. (2008). Types of knowledge and their relations to problem solving in science: Directions for practice. Educational Sciences Journal, 6, 105–112.Google Scholar
  32. Viennot, L. (1979). Spontaneous reasoning in elementary dynamics. European Journal of Science Education, 1(2), 205–221. doi: 10.1080/0140528790010209.CrossRefGoogle Scholar
  33. Von Bertalanffy, L. (1969). General system theory: Foundations, development, applications (Revised ed.). New York: George Braziller, Inc.Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2015

Authors and Affiliations

  • Michaël Canu
    • 1
    • 2
    • 3
    Email author
  • Cécile de Hosson
    • 1
  • Mauricio Duque
    • 2
  1. 1.LDAR (EA 4434), Université Paris Diderot, PRES Sorbonne Paris CitéParisFrance
  2. 2.GIAP-Universidad de Los AndesBogotáColombia
  3. 3.Ecole des Mines de NantesNantesFrance

Personalised recommendations