• Laura TuohilampiEmail author
  • Markku S. Hannula
  • Leonor Varas
  • Valentina Giaconi
  • Anu Laine
  • Liisa Näveri
  • Laia Saló i Nevado


Large-scale studies measure mathematics-related affect using questionnaires developed by researchers in primarily English-based countries and according to Western-based theories. Influential comparative conclusions about different cultures and countries are drawn based on such measurements. However, there are certain premises involved in these kinds of “imposed-etic approaches,” such as (1) universalism within the examined components, (2) universalism within the components’ significances, (3) the congruence between languages and conceptions, and (4) the components’ coverage of the phenomena. Therefore, researchers have criticized these premises citing a large number of reasons. In this study, the validity of conclusions based on results relying on the imposed-etic approach is questioned by examining to what extent the premises behind this approach can be justified. We investigate the premise of universality within the examined components by scrutinizing the limitations of a typical questionnaire. To what extent can such a questionnaire reveal affective domain structures for pupils in two countries as dissimilar as Finland and Chile? We found that there can be no meaningful precision. Universalism across components within the mathematics-related affect structure is not guaranteed in the two cultures, and the use of such questionnaires is simply unjustifiable. We also thoroughly examined the three other premises underpinning the Western-based imposed-etic perspective.

Key words

cultural comparison Finland and Chile imposed-etic approach mathematics-related affect young pupils 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10763_2014_9562_MOESM1_ESM.doc (52 kb)
ESM 1 (DOC 51 kb)


  1. Adediwura, A. A. (2011). The development and confirmatory factor analysis of a scale for the measurement of gifted students attitude towards mathematics. World Journal of Education, 1(1), 52–62.CrossRefGoogle Scholar
  2. Andrews, P. & Diego-Mantecón, J. (2014). Instrument adaptation in cross-cultural studies of students’ mathematics-related beliefs: Learning from healthcare research. Compare: A Journal of Comparative and International Education. doi: 10.1080/03057925.2014.884346.Google Scholar
  3. Berry, J. W. (1989). Imposed etics-emics-derived etics: The operationalization of a compelling idea. International Journal of Psychology, 5, 165–171.Google Scholar
  4. Bronfenbrenner, U. (1993). The ecology of cognitive development: Research models and fugitive findings. In. R. H. Wozniak & K. W. Fischer (Eds.), Development in context: Acting and thinking in specific environments. The Jean Piaget symposium series., (pp. 3–44). Hillsdale, NJ, England: Lawrence Erlbaum Associates.Google Scholar
  5. Chamberlin, S. A. (2010). A review of instruments created to assess affect in mathematics. Journal of Mathematics Education, 3(1), 167–182.Google Scholar
  6. Clarke, D. (2013). The validity-comparability compromise in crosscultural studies in mathematics education. In B. Ubuz, Ç. Haser & M. A. Mariotti (Eds.), Proceedings of the Eighth Congress of the European Society for Research in Mathematics Education (pp. 1855–1864). Antalya, Turkey: ERME.Google Scholar
  7. Evans, J. (2006). Affect and emotion in mathematical thinking. In J. Maasz & W. Schloeglmann (Eds.), New mathematics education and practice (pp. 233–255). Rotterdam, The Netherlands: Sense Publishers.Google Scholar
  8. Fennema, E. & Sherman, J. A. (1976). Fennema-Sherman mathematics attitudes scales: Instruments designed to measure attitudes toward the learning of mathematics by females and males. Journal for Research in Mathematics Education, 7(5), 324–326.Google Scholar
  9. Goldin, G. A. (2002). Affect, meta-affect, and mathematical belief structures. In G. C. Leder, E. Pehkonen & G. Törner (Eds.), Beliefs: A hidden variable in mathematics education? (pp. 59–72). Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
  10. Hannula, M. S. (2011). The structure and dynamics of affect in mathematical thinking and learning. In M. Pytlak, E. Swoboda & T. Rowland (Eds.), Proceedings of the 7th CERME conference (pp. 34–60). Rzezsow, Poland: ERME.Google Scholar
  11. Hannula, M. S. & Laakso, J. (2011). The structure of mathematics related beliefs, attitudes and motivation among Finnish grade 4 and grade 8 students. In B. Ubuz (Ed.), Proceedings of the 35th conference of the international group for the psychology of mathematics education, Vol. 3, (pp. 9–16). Ankara, Turkey: PME.Google Scholar
  12. Harter, S. (1999). The construction of the self. A developmental perspective. New York, NY: The Guildford Press.Google Scholar
  13. Harzing, A.-W. (2006). Response styles in cross-national survey research: A 26-country study. The International Journal of Crosscultural Management, 6(2), 243–266.CrossRefGoogle Scholar
  14. Hautamäki, J., Laaksonen, S. & Kupiainen, S. (2008). PISA 2006—interest and attitudes. In z. Hautamäki, E. Harjunen, A. Hautamäki, T. Kajalainen, S. Kupianen, S. Laaksonen, J. Lavonen, E. Pehkonen, P. Rantanen & P. Scheinen (Eds.), PISA 06 Finland. Analyses, reflections and explanations (pp. 181–192). Finland: Ministry of Education.Google Scholar
  15. Hirvonen, K. (2012). Onko laskutaito laskussa? Matematiikan oppimistulokset peruskoulun päättövaiheessa 2011. [Are calculating skills decreasing? Mathematics learning outcomes at the end of the comprehensive school at 2011.] Helsinki, Finland: The Finnish National Board of Education.Google Scholar
  16. Hofstede, G. & Hofstede, G. J. (2005). Cultures and organizations. Software of the mind. New York, NY: McGraw-Hill.Google Scholar
  17. Horan, P. M., DiStefano, C. & Motl, R. W. (2003). Wording effects in self-esteem scales: Methodological artifact or response style? Structural Equation Modeling: A Multidisciplinary Journal, 10(3), 435–455.CrossRefGoogle Scholar
  18. Joutsenlahti, J. & Vainionpää, J. (2010). Oppimateriaali matematiikan opetuksessa ja osaamisessa. In E. K. Niemi & J. Metsämuuronen (Eds.), Miten matematiikan taidot kehittyvät? Matematiikan oppimistulokset peruskoulun viidennen vuosiluokan jälkeen vuonna 2008. [How mathematics competences develop? Mathematics learning outcomes after grade 5 in comprehensive school at 2008.] (pp. 137–148). Helsinki, Finland: The Finnish National Board of Education.Google Scholar
  19. Laine, A., Näveri, L., Pehkonen, E., Ahtee, M., Heinilä, L. & Hannula, M. S. (2012). Third-graders’ problem solving performance and teachers’ actions. In T. Bergqvist (Ed.), Proceedings of the ProMath meeting in Umeå (pp. 69–81). University of Umeå.Google Scholar
  20. Leder, G. C. (2006). Affect and mathematics learning. In J. Maasz & W. Schloeglmann (Eds.), New mathematics education and practice (pp. 203–208). Rotterdam, The Netherlands: Sense Publishers.Google Scholar
  21. Lee, J. (2009). Universals and specifics of math self-concept, math self-efficacy, and math anxiety across 41 PISA 2003 participating countries. Learning and Individual Differences, 19, 355–365.CrossRefGoogle Scholar
  22. Leech, N. L., Barret, K. C. & Morgan, G. A. (2008). SPSS for intermediate statistics. New York, NY: Psychology press.Google Scholar
  23. Marsh, H. W., Ellis, L. A. & Graven, R. G. (2002). How do preschool children feel about themselves? Unraveling measurement and multidimensional self-concept structure. Developmental Psychology, 38(3), 376–393.CrossRefGoogle Scholar
  24. Mattila, L. & Rautopuro, J. (2013). Taustatietoja oppilaista ja opetuksesta [Background information about students and teaching]. In J. Rautopuro (Ed.), Hyödyllinen pakkolasku. Matematiikan oppimistulokset peruskoulun päättövaiheessa 2012 [A useful emergency landing. Learning results in mathematics after comprehensive school 2012]. Helsinki, Finland: The Finnish National Board of Education.Google Scholar
  25. McLeod, D. B. (1992). Research on affect in mathematics education: A reconceptualization. In D. A. Grows (Ed.), Handbook of research on mathematics learning and teaching (pp. 575–596). New York, NY: Macmillan.Google Scholar
  26. Metsämuuronen, J. (2010). Osaamisen ja asenteiden muutos perusopetuksen 3.-5. luokilla. [The changes of attainment and attitudes from grade 3 to grade 5 of comprehensive education. In E. K. Niemi & J. Metsämuuronen (Eds.), Miten matematiikan taidot kehittyvät? [How do the mathematics skills develop?] (pp. 93–136). Helsinki: National Board of Education.Google Scholar
  27. Metsämuuronen, J. (2012). Challenges of the Fennema-Sherman ¨test in the international comparisons. International Journal of Psychological Studies, 4(3), 1–22.CrossRefGoogle Scholar
  28. Midgley, C., Maehr, M. L., Hruda, L. Z., Anderman, E., Anderman, L. Freeman, K. E., … Urdan, T. (2000). Manual of the patterns of adaptive learning scales. University of Michigan. Retrieved from
  29. Niemi, E. (2010). Matematiikan oppimistulokset 6. vuosiluokan alussa. [Mathematics learning outcomes at the beginning of 6th grade. In E. K. Niemi & J. Metsämuuronen (Eds.), Miten matematiikan taidot kehittyvät? Matematiikan oppimistulokset peruskoulun viidennen vuosiluokan jälkeen vuonna 2008. [How mathematics skills develop? Mathematics learning outcomes after grade 5 in comprehensive school at 2008.] (pp. 17–70). Helsinki, Finland: The Finnish National Board of Education.Google Scholar
  30. OECD (2010a). PISA 2009 Results: What students know and can do—Student performance in reading, mathematics and science (Volume I). Retrieved from
  31. OECD (2010b). PISA 2009 Results: Overcoming social background—Equity in learning opportunities and outcomes (Volume II). Retrieved from
  32. OECD GIP (2010). Iberoamerica in PISA 2006. Regional report. Santillana Educatión, S.L. Retrieved from
  33. OECD (2011). Education at a Glance 2011: OECD indicators, OECD Publishing. Retrieved from
  34. OECD (2012). Education at a Glance 2012: OECD Indicators, OECD Publishing. Retrieved from
  35. Op ’t Eynde, P., de Corte, E. & Verschaffel, L. (2002). Framing students’ mathematics-related beliefs. In G. C. Leder, E. Pehkonen & G. Törner (Eds.), Beliefs: A hidden variable in mathematics education? (pp. 13–37). Dordrecht, The Netherlands: Kluwer Academic Publishers.CrossRefGoogle Scholar
  36. Pehkonen, E. (1994). On differences in pupils’ conceptions about mathematics teaching. The Mathematics Educator, 5(1), 3–10.Google Scholar
  37. Pekrun, R. (2006). The control-value theory of achievement emotions: Assumptions, corollaries, and implications for educational research and practice. Educational Psychology Review, 18, 315–341.CrossRefGoogle Scholar
  38. Pietilä, A. (2002). Luokanopettajaopiskelijoiden matematiikkakuva. Matematiikkakokemukset matematiikkakuvan muodostajina. [Preservice elementary teachers’ views of mathematics: The role of mathematics experiences in forming the views of mathematics.] A doctoral dissertation. Helsinki, Finland: University of Helsinki.Google Scholar
  39. Pintrich, P. R. & Schunk, D. H. (2002). Motivation in education: theory, research, and applications (2nd ed.). Upper Saddle River, NJ: Pearson Education.Google Scholar
  40. Ramírez, M. (2005). Attitudes toward mathematics and academic performance among Chilean 8th graders. Estudios Pedagógicos, 31, 97–112.Google Scholar
  41. Roesken, B., Hannula, M. S. & Pehkonen, E. (2011). Dimensions of students’ views of themselves as learners of mathematics. ZDM, 43(4), 497–506.Google Scholar
  42. Sumpter, L. (2012). Themes and interplay of beliefs in mathematical reasoning. International Journal of Science and Mathematics Education, 11(5), 1115–1135.CrossRefGoogle Scholar
  43. Tapia, M. & Marsh, G. E., II. (2004). An instrument to measure mathematics attitudes. Academic Exchange Quarterly, 8(2), 16–21.Google Scholar
  44. Tapia, M. & Marsh, G. E., II. (2005). Attitudes towards mathematics inventory redux. Academic Exchange Quarterly, 9(3), 272–275.Google Scholar
  45. Tuohilampi, L. & Hannula, M. S. (2011). High expectations, low confidence – discrepancy in self-image as a reason for displeasure in mathematics. In B. Ubuz (Ed.), Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, Vol. 1, (p. 406). Ankara, Turkey: PME.Google Scholar
  46. Tuohilampi, L., Hannula, M. & Varas, L. (2014). 9-year old students’ self-related belief structures regarding mathematics: a comparison between Finland and Chile. In M. S. Hannula, P. Portaankorva-Koivisto, A. Laine & L. Näveri (Eds.), Proceedings of the 18th conference of the mathematical views (pp. 15–26). Helsinki, Finland: MAVI.Google Scholar
  47. Valenzuela, J.P., Bellei, C. & De Los Ríos, D. (2009). Evolución de la segregación socioeconómica de los estudiantes chilenos y su relación con el financiamiento compartido [Evolution of the socioeconomic segregation of Chilean pupils and their relation to the shared funding policy]. In Evidencias para Políticas Públicas en Educación, (pp. 231-284). FONIDE, Ministerio de Educación.Google Scholar
  48. Wong, N. (2008). Confucian heritage culture learner’s phenomenon: from “exploring the middle zone” to “constructing a bridge”. ZDM—International Journal of. Mathematics Education, 40, 973–981.Google Scholar
  49. Zhu, Y. & Leung, F. S. (2011). Motivation and achievement: Is there an East Asian model? International Journal of Science and Mathematics Education, 9, 1189–1212.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2015

Authors and Affiliations

  • Laura Tuohilampi
    • 1
    Email author
  • Markku S. Hannula
    • 1
  • Leonor Varas
    • 2
  • Valentina Giaconi
    • 2
  • Anu Laine
    • 1
  • Liisa Näveri
    • 1
  • Laia Saló i Nevado
    • 1
  1. 1.University of HelsinkiHelsinkiFinland
  2. 2.University of ChileHelsinkiFinland

Personalised recommendations