• Gloria Sánchez-MatamorosEmail author
  • Ceneida Fernández
  • Salvador Llinares


This research study examines the development of the ability of pre-service teachers to notice signs of students’ understanding of the derivative concept. It analyses preservice teachers’ interpretations of written solutions to problems involving the derivative concept before and after participating in a teacher training module. The results indicate that the development of this skill is linked to pre-service teachers’ progressive understanding of the mathematical elements that students use to solve problems. We have used these results to make some suggestions for teacher training programmes.

Key words

knowledge for mathematics teaching professional noticing teacher learning understanding of derivative 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. An, S. & Wu, Z. (2012). Enhancing mathematics teachers’ knowledge of students’ thinking from assessing and analysis misconceptions in homework. International Journal of Science and Mathematics Education, 10, 717–753.CrossRefGoogle Scholar
  2. Artigue, M. (1990). Advanced mathematical thinking. In D. Tall (Ed.), Analysis (pp. 167–198). Dordrecht: Kluwer Academic Publishers.Google Scholar
  3. Asiala, M., Cottrill, J., Dubinsky, E. & Schwingendorf, K. (1997). The development of students’ graphical understanding of the derivate. Journal of Mathematical Behavior, 16, 399–431.CrossRefGoogle Scholar
  4. Baker, B., Cooley, L. & Trigueros, M. (2000). A calculus graphing schema. The Journal for Research in Mathematics Education, 31, 557–578.CrossRefGoogle Scholar
  5. Ball, D. L., Thames, M. H. & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59, 389–407.CrossRefGoogle Scholar
  6. Bartell, T. G., Webel, C., Bowen, B. & Dyson, N. (2013). Prospective teacher learning: Recognizing evidence of conceptual understanding. Journal of Mathematics Teacher Education, 16, 57–79.CrossRefGoogle Scholar
  7. Badillo, E., Azcarate, C. & Font, V. (2011). Análisis de los niveles de comprensión de los objetos f’(a) y f’(x) en profesores de Matemáticas. Enseñanza de las Ciencias, 29(2), 191–206.Google Scholar
  8. Biza, I., Christou, C. & Zachariades, T. (2008). Student perspectives on the relationship between a curve and its tangent in the transition from Euclidean Geometry to Analysis. Research in Mathematics Education, 10(1), 53–70.CrossRefGoogle Scholar
  9. Biza, I., Nardi, E. & Zhachariades, T. (2007). Using tasks to Explñore teacher knowledge in situation-specific contexts. Journal of Mathematics Teacher Education, 10, 301–309.CrossRefGoogle Scholar
  10. Clements, D. & Sarama, J. (2004). Learning trajectories in mathematics education. Mathematical Thinking and Learning, 6(2), 81–89.CrossRefGoogle Scholar
  11. Fernández, C., Llinares, S. & Valls, J. (2012). Learning to notice students’ mathematical thinking through on-line discussions. ZDM Mathematics Education, 44, 747–759.CrossRefGoogle Scholar
  12. Fernandez, C., Llinares, S. & Valls, J. (2013). Primary school teacher’s noticing of students’ mathematical thinking in problem solving. The Mathematics Enthusiast, 10, 441–468.Google Scholar
  13. Ferrini-Mundy, J. & Graham, K. (1994). Research in calculus learning. Understanding limits, derivates and integrals. In J. Kaput & E. Dubinsky (Eds.), Research issues in undergraduate mathematics learning, MAA notes 33 (pp. 31–45). Washington, DC: Mathematical Association of America.Google Scholar
  14. Franke, M. L. & Kazemi, E. (2001). Learning to teach mathematics: Focus on student thinking. Theory in Practice, 40(2), 102–109.CrossRefGoogle Scholar
  15. García, M., Llinares, S. & Sánchez-matamoros, G. (2011). Characterizing thematized derivative schema by the underlying emergent structures. International Journal of Science and Mathematics Education, 9, 1023–1045.CrossRefGoogle Scholar
  16. Habre, S. & Abboud, M. (2006). Student’s conceptual understanding of a function and its derivative in an experimental calculus course. The Journal of Mathematical Behavior, 25, 57–72.CrossRefGoogle Scholar
  17. Jacobs, V. R., Franke, M. L., Carpenter, T. P., Levi, L. & Battey, D. (2007). Professional development focused on children’s algebraic reasoning in elementary school. Journal for Research in Mathematics Education, 38, 258–288.Google Scholar
  18. Jacobs, V. R., Lamb, L. C. & Philipp, R. A. (2010). Professional noticing of children’s mathematical thinking. Journal for Research in Mathematics Education, 41, 169–202.Google Scholar
  19. Magiera, T. M., van den Kieboom, L. A. & Moyer, J. (2013). An exploratory study of pre-service middle school teachers’ knowledge of algebraic thinking. Educational Studies in Mathematics. doi: 10.1007/s10649-013-9472-8.Google Scholar
  20. Mason, J. (2002). Researching your own practice. The discipline of noticing. London: Routledge Falmer.Google Scholar
  21. Nagle, C., Moore-Russo, D., Viglietti, J. & Martin, K. (2013). Calculus students’ and instructors’ conceptualizations of slope: A comparison across academic levels. International Journal of Science and Mathematics Education, 11(6), 1491–1515.CrossRefGoogle Scholar
  22. Sánchez-matamoros, G., García, M. & Llinares, S. (2006). El desarrollo del esquema de derivada [The development of derivative schema]. Enseñanza de las Ciencias, 24(1), 85–98.Google Scholar
  23. Sánchez-matamoros, G., García, M. & Llinares, S. (2008). La comprensión de la derivada como objeto de investigación en Didáctica de la Matemática [The understanding of derivative as an research topic in Mathematics Education]. RELIME-Revista Latinoamericana de Investigación en Matemática Educativa, 11, 267–296.Google Scholar
  24. Spitzer, S., Phelps, C. M., Beyers, J. E. R., Johnson, D. Y. & Sieminski, E. M. (2011). Developing prospective elementary teachers’ ability to identify evidence of student mathematical achievement. Journal of Mathematics Teacher Education, 14, 67–87.CrossRefGoogle Scholar
  25. Strauss, A. & Corbin, J. (1994). Grounded theory methodology: An overview. In N. K. Denzin & Y. Lincoln (Eds.), Handbook of qualitative research (pp. 273–285). Thousand Oaks: Sage.Google Scholar
  26. van Es, E. A. & Sherin, M. G. (2008). Mathematics teachers “learning to notice” in the context of a video club. Teaching and Teacher Education, 24, 244–276.CrossRefGoogle Scholar
  27. Wilson, P. H., Mojica, G. F. & Confrey, J. (2013). Learning trajectories in teacher education: Supporting understandings of students’ mathematical thinking. Journal of Mathematical Behavior, 32, 103–121.CrossRefGoogle Scholar
  28. Zandieth, M. (2000). A theoretical framework for analyzing student understanding of the concept of derivative. In E. Dubinsky, A. H. Shoenfeld & J. Kaput (Eds.), Research in collegiate mathematics education IV CBMS issues in mathematics education (Vol. 8, pp. 103–127). Providence, USA: American Mathematical Society.Google Scholar

Copyright information

© Ministry of Science and Technology, Taiwan 2014

Authors and Affiliations

  • Gloria Sánchez-Matamoros
    • 1
    Email author
  • Ceneida Fernández
    • 2
  • Salvador Llinares
    • 2
  1. 1.Universidad de SevillaSevillaSpain
  2. 2.Universidad de AlicanteAlicanteSpain

Personalised recommendations