Neuroscience Perspectives for Science and Mathematics Learning in Technology-Enhanced Learning Environments

Editorial
  • O. Roger Anderson
  • Bradley C. Love
  • Meng-Jung Tsai
Introduction

References

  1. Anderson, O. R. (1983). A neuromathematical model of human information processing. Journal of Research in Science Teaching, 20, 603–620.CrossRefGoogle Scholar
  2. Anderson, O. R. (1997). A neurocognitive perspective on current learning theory and science instructional strategies. Science Education, 81, 67–90.CrossRefGoogle Scholar
  3. Anderson, O. R. (2009). Neurocognitive theory and constructivism in science education: A review of neurobiological, cognitive and cultural perspectives. Brunei International Journal of Mathematics and Science Education, 1, 1–32.Google Scholar
  4. Anderson, O. R. (2014). Progress in application of the neurosciences to an understanding of human learning: The challenge of finding a middle-ground neuroeducational theory. International Journal of Science and Mathematics Education. doi:10.1007/s10763-013-9455-3.
  5. Anderson, O. R. & Contino, J. (2013). The role of visualization in conceptual learning and conceptual change (Chap. 1 in Section 1: Brain functioning and conceptual change). In K. Finson & J. Pedersen (Eds.), Visual data and their use in science education (pp. 3–21). Charlotte: Information Age Publishing.Google Scholar
  6. Ariasi, N. & Mason, L. (2014). From covert processes to overt outcomes of refutation text reading: The interplay of science text structure and working memory capacity through eye fixations. International Journal of Science and Mathematics Education. doi:10.1007/s10763-013-9494-9.
  7. Canham, M. & Hegarty, M. (2010). Effects of knowledge and display design on comprehension of complex graphics. Learning and Instruction, 20, 155–166.CrossRefGoogle Scholar
  8. Chang, H.-Y. & Linn, M. C. (2013). Scaffolding learning from molecular visualizations. Journal of Research in Science Teaching, 50(7), 858–886.CrossRefGoogle Scholar
  9. Chen, Y. C. & Yang, F. Y. (2014). Probing the relationship between process of spatial problems solving and science learning: An eye tracking approach. International Journal of Science and Mathematics Education. doi:10.1007/s10763-013-9504-y.
  10. Duncan, R. G. & Rivet, A. (2013). Science learning progressions. Science, 339, 396–397.CrossRefGoogle Scholar
  11. Ho, H. N. J., Tsai, M.-J., Wang, C.-Y. & Tsai, C.-C. (2014). Prior knowledge and online inquiry-based science reading: Evidence from eye-tracking. International Journal of Science and Mathematics Education. doi:10.1007/s10763-013-9489-6.
  12. Jarodzka, H., Scheiter, K., Gerjets, P. & van Gog, T. (2010). In the eyes of the beholder: How experts and novices interpret dynamic stimuli. Learning and Instruction, 20, 146–154.CrossRefGoogle Scholar
  13. Kwon, Y.-J. & Lawson, A. E. (2000). Linking brain growth with scientific reasoning ability and conceptual change during adolescence. Journal of Research in Science Teaching, 37(1), 44–62.CrossRefGoogle Scholar
  14. Lai, M. L., Tsai, M.-J., Yang, F.-Y., Hsu, C.-Y., Liu, T. C., Lee, S. W. Y., Lee, M.-H., Chiou, G. L., Liang, J. C. & Tsai, C.-C. (2013). A review of using eye-tracking technology in exploring learning from 2000 to 2012. Educational Research Review, 10, 90–115.CrossRefGoogle Scholar
  15. Lawson, A. E. (1986). A neurological model of sensory-motor problem solving with possible implications for higher-order cognition and instruction. Journal of Research in Science Teaching, 23, 503–522.CrossRefGoogle Scholar
  16. Lawson, A. E. (2003). The neurological basis of learning, development and discovery: Implications for teaching science and mathematics. Dordrecht: Kluwer.Google Scholar
  17. Lawson, A. E. (2004). Reasoning and brain function. In R. J. Sternberg & J. P. Leighton (Eds.), The nature of reasoning. New York: Cambridge University Press.Google Scholar
  18. Lee, S. W. Y., Tsai, C.-C., Wu, Y. T., Tsai, M.-J., Liu, T. C., Huang, F. K., Lai, C. H., Liang, J. C., Wu, H. C. & Chang, C. Y. (2011). Internet-based science learning: A review of journal publications. International Journal of Science Education, 33(14), 1893–1925.CrossRefGoogle Scholar
  19. Lin, J. J. H. & Lin, S. S. J. (2014). Cognitive load for configuration comprehension in computer-supported geometry problem solving: An eye movement perspective. International Journal of Science and Mathematics Education. doi:10.1007/s10763-013-9479-8.
  20. Liu, C. J. & Chiang, W. W. (2014). Theory, method and practice of neuroscientific findings in science education. International Journal of Science and Mathematics Education. doi:10.1007/s10763-013-9482-0.
  21. Longo, P., Anderson, O. R. & Wicht, P. (2002). Visual thinking networking promotes problem-solving achievement for 9th grade Earth Science students. Electronic Journal of Science Education, 7, 1–50.Google Scholar
  22. Norton, A. & Deater-Deckard, K. (2014). Mathematics in mind, brain, and education: A neo-Piagetian approach. International Journal of Science and Mathematics Education. doi:10.1007/s10763-014-9512-6.
  23. Schrag, F. (2011). Does neuroscience matter for education? Educational Theory, 61, 221–236.CrossRefGoogle Scholar
  24. She, H. C. & Chen, Y. Z. (2009). The impact of multimedia effect on science learning: Evidence from eye movements. Computers & Education, 53(4), 1297–1307.CrossRefGoogle Scholar
  25. Susac, A., Bubic, A., Kaponja, J., Planinic, M. & Palmovic, M. (2014). Eye movements reveal students’ strategies in simple equation solving. International Journal of Science and Mathematics Education. doi:10.1007/s10763-014-9514-4.
  26. Tsai, M.-J., Hou, H. T., Lai, M. L., Liu, W.-Y. & Yang, F. Y. (2012). Visual attention for solving multiple-choice science problem: An eye-tracking analysis. Computers & Education, 58(1), 375–385.CrossRefGoogle Scholar
  27. Van Gog, T. & Scheiter, K. (2010). Eye tracking as a tool to study and enhance multimedia learning. Learning and Instruction, 20, 95–99.CrossRefGoogle Scholar
  28. Waisman, I., Leikin, M., Shaul, S. & Leikin, R. (2014). Brain activity associated with translation between graphical and symbolic representations of functions in generally gifted and excelling in mathematics adolescents. International Journal of Science and Mathematics Education. doi:10.1007/s10763-014-9513-5.

Copyright information

© Ministry of Science and Technology, Taiwan 2014

Authors and Affiliations

  • O. Roger Anderson
    • 1
  • Bradley C. Love
    • 2
  • Meng-Jung Tsai
    • 3
  1. 1.Mathematics, Science and Technology, Teachers CollegeColumbia UniversityNew YorkUSA
  2. 2.Experimental PsychologyUniversity College LondonLondonUK
  3. 3.Graduate Institute of Digital Learning and EducationNational Taiwan University of Science and TechnologyTaipeiTaiwan

Personalised recommendations