Cross-Age Peer Tutoring in Physics: Tutors, Tutees, and Achievement in Electricity

  • Marianne KornerEmail author
  • Martin Hopf


International comparisons reveal that lower-secondary-level students in Austria perform below the OECD mean in science. Guided by the search for remedies and improvements in science teaching, this study investigates whether cross-age peer tutoring is an appropriate method for teaching physics. A modern and concise definition of peer tutoring is available from the review of previous findings which focus on tutors as well as on tutees. This clarification leads to an experimental setup mostly in tutor–tutee dyads where a sample of n = 172 students from grades 5 to 8 underwent a cross-age peer tutoring process dealing with different topics within the context of electricity. The overall achievement in electricity for this age group was examined in a pretest–posttest design, using test items about electricity. Additionally, analyses were carried out in order to investigate whether or not there is a correlation between the possible roles within the process (active tutors–passive tutees) and the overall achievement. The results indicate that the active role is a crucial one for the achievement. Finally, a multiple linear regression model is presented which summarizes the research results and estimates the posttest scores based on the relevant parameters: the pretest score, the active role within the tutoring process, and the first language.


Achievement Cross-age peer tutoring Electricity Physics Tutee Tutor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10763_2014_9539_MOESM1_ESM.doc (37 kb)
ESM 1 (DOC 37 kb)


  1. Breit, S. (2009). Sozialisationsbedingungen von Schülerinnen und Schülern mit Migrationshintergund. In C. Schreiner & U. Schwantner (Eds.), PISA 2006 (pp. 136–145). Graz: Leycam.Google Scholar
  2. Buehner, M. & Ziegler, M. (2009). Statistik fuer Psychologen und Sozialwissenschaftler. Muenchen: Pearson.Google Scholar
  3. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.): Lawrence Erlbaum.Google Scholar
  4. Cohen, P. A., Kulik, J. A. & Kulik, C. L. C. (1982). Educational outcomes of tutoring—A meta-analysis of findings. American Educational Research Journal, 19(2), 237–248.CrossRefGoogle Scholar
  5. Duit, R. (2009). Bibliography—students’ alternative frameworks and science education. Retrieved 13/08/2012, 2012, from
  6. Duit, R., & Rhöneck, C. (1998). Learning and understanding key concepts of electricity. Connecting research in physics education with teacher education, 55-62.Google Scholar
  7. Duit, R. & Treagust, D. F. (2003). Conceptual change: A powerful framework for improving science teaching and learning. International Journal of Science Education, 25(6), 671–688.CrossRefGoogle Scholar
  8. Duit, R., Treagust, D. F. & Widodo, A. (2008). Teaching science for conceptual change: Theory and practice. New York: Taylor & Francis.Google Scholar
  9. Engelhardt, P. V. & Beichner, R. J. (2004). Students’ understanding of direct current resistive electrical circuits. American Journal of Physics, 72, 98–115.CrossRefGoogle Scholar
  10. Fogarty, J. L. & Wang, M. C. (1982). An investigation of the cross-age peer tutoring process: Some implications for instructional design and motivation. The Elementary School Journal, 82(5), 451–469.CrossRefGoogle Scholar
  11. Gaustad, J. (1993). Peer and cross-age tutoring. Oregon: ERIC Clearinghouse on Educational Management Eugene.Google Scholar
  12. Hattie, J. A. C. (2009). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. London, New York: Routledge.Google Scholar
  13. Häußler, P., Bünder, W., Duit, R., Gräber, W. & Mayer, J. (1998). Naturwissenschaftsdidaktische Forschung: Perspektiven für die Unterrichtspraxis. Kiel: Institut für die Pädagogik der Naturwissenschaften.Google Scholar
  14. Howe, C., Tolmie, A., Greer, K. & Mackenzie, M. (1995). Peer collaboration and conceptual growth in physics: Task influences on children’s understanding of heating and cooling. Cognition and Instruction, 13(4), 483–503.CrossRefGoogle Scholar
  15. Lumpe, A. T. & Staver, J. R. (1995). Peer collaboration and concept development: Learning about photosynthesis. Journal of Research in Science Teaching, 32(1), 71–98.CrossRefGoogle Scholar
  16. Martin, J. P. (1998). Das Projekt: “Lernen durch Lehren”–fachdidaktische Forschung im Spannungsfeld von Theorie und selbsterlebter Praxis. In M. Liedtke (Eds.), Gymnasium - Neue Formen des Unterrichts und der Erziehungpp. 151-166).Google Scholar
  17. OECD (Producer). (2010, 2012-09-05) PISA 2009 Ergebnisse: Zusammenfassung.Google Scholar
  18. Reusser, K. (2001). Unterricht zwischen Wissensvermittlung und Lernen lernen. Donauwörth: Auer.Google Scholar
  19. Rhöneck, C. (1986). Vorstellungen vom elektrischen Stromkreis. Naturwissenschaften im Unterricht Physik/Chemie, 34(13), 10–14.Google Scholar
  20. Robinson, D. R., Schofield, J. W. & Steers-Wentzell, K. L. (2005). Peer and cross-age tutoring in math: Outcomes and their design implications. Educational Psychology Review, 17(4), 327–362.CrossRefGoogle Scholar
  21. Rohrbeck, C. A., Ginsburg-Block, M. D., Fantuzzo, J. W. & Miller, T. R. (2003). Peer-assisted learning interventions with elementary school students: A meta-analytic review. Journal of Educational Psychology, 95(2), 240–257.CrossRefGoogle Scholar
  22. Shaffer, P. S. & McDermott, L. C. (1992). Research as a guide for curriculum development: An example from introductory electricity. Part II: Design of instructional strategies. American Journal of Physics, 60(11), 994–1013.CrossRefGoogle Scholar
  23. Shipstone, D. M. (1984). A study of children’s understanding of electricity in simple DC circuits. European Journal of Science Education, 6(2), 185–198.CrossRefGoogle Scholar
  24. Stork, E., & Wiesner, H. (1981). Schülervorstellungen zur Elektrizitätslehre und Sachunterricht. Sachunterricht und Mathematik in der Primarstufe, 9(6).Google Scholar
  25. Strike, K. A., & Posner, G. J. (1992). A revisionist theory of conceptual change. Philosophy of Science, Cognitive Psychology, and Educational Theory and Practice, 147-176.Google Scholar
  26. Topping, K. J. (1996). The effectiveness of peer tutoring in further and higher education: A typology and review of the literature. Higher Education, 32(3), 321–345.CrossRefGoogle Scholar
  27. Topping, K. J. (2005). Trends in peer learning. Educational Psychology, 25(6), 631–645.CrossRefGoogle Scholar
  28. Topping, K. J. & Bryce, A. (2004). Cross-age peer tutoring of reading and thinking: Influence on thinking skills. Educational Psychology, 24(5), 595–621.CrossRefGoogle Scholar
  29. Treagust, D. F. (Ed.). (2007). General instructional methods and strategies. New York: Taylor and Francis.Google Scholar
  30. Urban-Woldron, H., & Hopf, M. (2012). Testinsrument zum Verständnis in der Elektrizitätslehre. Zeitschrift für Didaktik der Naturwissenschaften, Jg, 18, 229–259.Google Scholar
  31. Vygotsky, L. S. (1978). Mind in society. London: Harvard University Press.Google Scholar
  32. Wandersee, J. H., Mintzes, J. J. & Novak, J. D. (1994). Research on alternative conceptions in science. New York: Macmillan.Google Scholar
  33. White, R., & Gunstone, R. (1992). Probing understanding. London, New York: RoutledgeFalmer.Google Scholar
  34. Zinn, B. (2008). Physik lernen, um Physik zu lehren. Kassel: Universität Kassel.Google Scholar
  35. Zinn, B. (2009). Ergebnisse einer Pilotuntersuchung zur Unterrichtsmethode “Lernen durch Lehren”. Zeitschrift für Didaktik der Naturwissenschaften, Jg, 15, 325–329.Google Scholar

Copyright information

© Ministry of Science and Technology, Taiwan 2014

Authors and Affiliations

  1. 1.Austrian Educational Competence Centre PhysicsUniversity of ViennaViennaAustria
  2. 2.Austrian Educational Competence Centre PhysicsUniversity of ViennaViennaAustria

Personalised recommendations