Advertisement

MATHEMATICS IN MIND, BRAIN, AND EDUCATION: A NEO-PIAGETIAN APPROACH

  • Anderson NortonEmail author
  • Kirby Deater-Deckard
Article

Abstract

Because of their focus on psychological structures and operations, neo-Piagetian approaches to learning lend themselves to neurological hypotheses. Recent advances in neural imaging and educational technology now make it possible to test some of these claims. Here, we take a neo-Piagetian approach to mathematical learning in order to frame two studies involving the use of electroencephalography and functional magnetic resonance imaging imaging, as well as the use of iOS-based apps designed to elicit particular ways of operating with mathematics. Results could inform theories of mathematical learning and effective educational game design.

Key words

educational technology fractions mathematics education neuroscience 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Bruer, J. T. (1997). Education and the brain: A bridge too far. Educational Researcher, 26(8), 4–16.CrossRefGoogle Scholar
  2. Chochon, F., Cohen, L., Van De Moortele, P. F. & Dehaene, S. (1999). Differential contributions of the left and right inferior parietal lobules to number processing. Journal of Cognitive Neuroscience, 11(6), 617–630.CrossRefGoogle Scholar
  3. Çiçek, M., Deouell, L. Y. & Knight, R. T. (2009). Brain activity during landmark and line bisection tasks. Frontiers in Human Neuroscience, 3.Google Scholar
  4. Confrey, J. (1994). Splitting, similarity, and rate of change: A new approach to multiplication and exponential functions. In G. Harel & J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics (pp. 291–331). Albany: SUNY Press.Google Scholar
  5. Dehaene, S. (1997). The number sense: How the mind creates mathematics. Oxford: Oxford University Press.Google Scholar
  6. Delazer, M., Ischebeck, A., Domahs, F., Zamarian, L., Koppelstaetter, F., Siedentopf, C. M. & Felber, S. (2005). Learning by strategies and learning by drill—Evidence from an fMRI study. NeuroImage, 25(3), 838–849.CrossRefGoogle Scholar
  7. Demeyere, N., Rotshtein, P. & Humphreys, G. W. (2012). The neuroanatomy of visual emmuneration: Differentiating necessary neural correlates for subitizing versus counting in a neuropsychological voxel-based morphometry study. Journal of Cognitive Neuroscience, 24(4), 948–964.CrossRefGoogle Scholar
  8. Ellis, A. B. (2007). The influence of reasoning with emergent quantities on students’ generalizations. Cognition and Instruction, 25(4), 439–478.CrossRefGoogle Scholar
  9. Epstein, H. T. (2001). An outline of the role of brain in human cognitive development. Brain and Cognition, 45, 44–51.CrossRefGoogle Scholar
  10. Fischer, K. W. & Bidell, T. R. (2006). Dynamic development of action, thought, and emotion. In W. Damon & R. M. Lerner (Eds.), Theoretical models of human development. Handbook of child psychology (6th ed., Vol. 1, pp. 313–399). New York: Wiley.Google Scholar
  11. Fischer, K. W., Daniel, D. D., Immordino-Yang, M. H., Stern, E., Battro, A. & Koizumi, H. (2007). Why mind, brain, and education? Why now? International Mind Brain and Education Society, 1(1), 1–2.Google Scholar
  12. Grabner, R. H., Ansari, D., Reishofer, G., Stern, E., Ebner, F. & Neuper, C. (2007). Individual differences in mathematical competence predict parietal brain activation during mental calculation. NeuroImage, 38(2), 346–356.CrossRefGoogle Scholar
  13. Grabner, R. H., Ischebeck, A., Reishofer, G., Koschutnig, K., Delazer, M., Ebner, F. & Neuper, C. (2009). Fact learning in complex arithmetic and figural‐spatial tasks: The role of the angular gyrus and its relation to mathematical competence. Human Brain Mapping, 30(9), 2936–2952.CrossRefGoogle Scholar
  14. Hackenberg, A. J. (2007). Units coordination and the construction of improper fractions: A revision of the splitting hypothesis. Journal of Mathematical Behavior, 26(1), 27–47.CrossRefGoogle Scholar
  15. Hackenberg, A. J. (2010). Students’ reversible multiplicative reasoning with fractions. Cognition and Instruction, 28(4), 383–432.CrossRefGoogle Scholar
  16. Hackenberg, A. J., & Lee, M. Y. (2012). Pre-fractional middle school students’ algebraic reasoning. In L. R. Van Zoest, J.-J. Lo, & J. L. Kratky (Eds.), Proceedings of the 34th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 943–950). Kalamazoo, MI: Western Michigan University.Google Scholar
  17. Ischebeck, A., Schocke, M. & Delazer, M. (2009). The processing and representation of fractions within the brain: An fMRI investigation. NeuroImage, 47, 403–412.CrossRefGoogle Scholar
  18. Izsák, A., Jacobsen, E., de Araujo, Z. & Orrill, C. H. (2012). Measuring mathematical knowledge for teaching fractions with drawn quantities. Journal for Research in Mathematics Education, 43(4), 391–427.CrossRefGoogle Scholar
  19. Karmiloff-Smith, A. (2009). Nativism versus neuroconstructivism: Rethinking the study of developmental disorders. Developmental Psychology, 45, 56–63.CrossRefGoogle Scholar
  20. Kaufman, E. L., Lord, M. W., Reese, T. W. & Volkmann, J. (1949). The discrimination of visual number. The American Journal of Psychology, 62(4), 498–525.CrossRefGoogle Scholar
  21. Kruggel, F., Hermann, C. S., Wiggins, C. J. & von Cramon, D. Y. (2001). Hemodynamic and electroencephalographic responses to illusory figures: Recording of the evoked potentials during functional MRI. NeuroImage, 14, 1327–1336.CrossRefGoogle Scholar
  22. Martin, K., Jacobs, S. & Frey, S. H. (2011). Handedness-dependent and -independent cerebral asymmetries in the anterior intraparietal sulcus and ventral premotor cortex during grasp planning. NeuroImage, 57(2), 502–512.CrossRefGoogle Scholar
  23. Mason, L. (2009). Bridging neuroscience and education: A two-way path is possible. Cortex, 45, 548–549.CrossRefGoogle Scholar
  24. Meck, W. H. & Church, R. M. (1983). A mode control model of counting and timing processes. Journal of Experimental Psychology: Animal Behavior Processes, 9(3), 320.Google Scholar
  25. Nieder, A. & Dehaene, S. (2009). Representation of number in the brain. Annual Review of Neuroscience, 32, 185–208.CrossRefGoogle Scholar
  26. Norton, A. & Boyce, S. (2013). Coordinating n + 1 levels of units. Proceedings of the Thirty-Fourth Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education. Chicago: University of Chicago Press.Google Scholar
  27. Norton, A. & Wilkins, J. (2009). A quantitative analysis of children’s splitting operations and fractional schemes. Journal of Mathematical Behavior, 28(2/3), 150–161.CrossRefGoogle Scholar
  28. Norton, A. & Wilkins, J. L. M. (2012). The splitting group. Journal for Research in Mathematics Education, 43(5), 557–583.CrossRefGoogle Scholar
  29. Norton, A. & Wilkins, J. (2013). Supporting students’ constructions of the splitting operation. Cognition & Instruction, 31(1), 2–28.CrossRefGoogle Scholar
  30. Olive, J. (2000). Computer tools for interactive mathematical activity in elementary school. International Journal of Computers for Mathematical Learning, 5, 241–262.CrossRefGoogle Scholar
  31. Olive, J. & Çağlayan, G. (2007). Learner’s difficulties with quantitative units in algebraic word problems and the teacher’s interpretations of those difficulties. International Journal of Science and Mathematics Education, 6, 269–292.CrossRefGoogle Scholar
  32. Piaget, J. (1942). The child’s conception of number. London: Routledge & Kegan Paul.Google Scholar
  33. Piaget, J. (1970). Structuralism (C. Maschler, Trans.). New York: Basic Books. Original work published 1968.Google Scholar
  34. Piazza, M., Izard, V., Pinel, P., Le Bihan, D. & Dehaene, S. (2004). Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron, 44(3), 547–555.CrossRefGoogle Scholar
  35. Poldrack, R. A. (2006). Can cognitive processes be inferred from neuroimaging data? Trends in Cognitive Sciences, 10(2), 59–63.CrossRefGoogle Scholar
  36. Potter, M. C. & Levy, E. I. (1968). Spatial enumeration without counting. Child Development, 39(1), 265–272.CrossRefGoogle Scholar
  37. Qin, Y., Carter, C. S., Silk, E. M., Stenger, V. A., Fissell, K., Goode, A. & Anderson, J. R. (2004). The change of the brain activation patterns as children learn algebra equation solving. PNAS, 101, 5686–5691.CrossRefGoogle Scholar
  38. Quartz, S. R. & Sejnowski, T. J. (1997). The neural basis of cognitive development: A constructivist manifesto. Behavioral and Brain Sciences, 20, 537–596.Google Scholar
  39. Revkin, S. K., Piazza, M., Izard, V., Cohen, L. & Dehaene, S. (2008). Does subitizing reflect numerical estimation? Psychological Science, 19(6), 607–614.CrossRefGoogle Scholar
  40. Rivera, S. M., Reiss, A. L., Eckert, M. A. & Menon, V. (2005). Developmental changes in mental arithmetic: Evidence for increased functional specialization in the left inferior parietal cortex. Cerebral Cortex, 15(11), 1779–1790.CrossRefGoogle Scholar
  41. Rosenberg-Lee, M., Lovett, M. C. & Anderson, J. R. (2009). Neural correlates of arithmetic calculation strategies. Cognitive, Affective, & Behavioral Neuroscience, 9(3), 270–285.CrossRefGoogle Scholar
  42. Rueda, M. R., Posner, M. I. & Rothbart, M. K. (2005). The development of executive attention: Contributions to the emergence of self-regulation. Developmental Neuropsychology, 28(2), 573–594.CrossRefGoogle Scholar
  43. Simon, M. A. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. Journal for Research in Mathematics Education, 26(2), 114–145.CrossRefGoogle Scholar
  44. Simon, O., Mangin, J. F., Cohen, L., Le Bihan, D. & Dehaene, S. (2002). Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron, 33(3), 475–487.CrossRefGoogle Scholar
  45. Sophian, C. & Crosby, M. E. (2008). What eye fixation patterns tell us about subitizing. Developmental Neuropsychology, 33(3), 394–409.CrossRefGoogle Scholar
  46. Steffe, L. P. (1992). Schemes of action and operation involving composite units. Learning and Individual Differences, 4(3), 259–309.CrossRefGoogle Scholar
  47. Steffe, L. P. (1994). Children’s multiplying schemes. In G. Harel & J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics (pp. 3–39). Albany: State University of New York Press.Google Scholar
  48. Steffe, L. P. (2002). A new hypothesis concerning children's fractional knowledge. Journal of Mathematical Behavior, 20(3), 267–307.CrossRefGoogle Scholar
  49. Steffe, L. P. & Olive, J. (Eds.). (2010). Children’s fractional knowledge. New York: Springer.Google Scholar
  50. Steffe, L. P. & Thompson, P. W. (2000). Teaching experiment methodology: Underlying principles and essential elements. In R. Lesh & A. E. Kelly (Eds.), Research design in mathematics and science education (pp. 267–307). Hillsdale: Erlbaum.Google Scholar
  51. Szucs, D. & Goswami, U. (2007). Educational neuroscience: Defining a new discipline for the study of mental representations. Mind Brain and Education, 1(3), 114–127.CrossRefGoogle Scholar
  52. Tam, F., Churchill, N. W., Strother, S. C. & Graham, S. J. (2011). A new tablet for writing and drawing during functional MRI. Human Brain Mapping, 32, 240–248. doi: 10.1002/hbm.21013.CrossRefGoogle Scholar
  53. Tonry, M., Ohlin, L. E. & Farrington, D. P. (1991). Accelerated longitudinal design. In Human Development and Criminal Behavior (pp. 27–34). Springer: New York.CrossRefGoogle Scholar
  54. Ulrich, C. L. (2012). Additive relationships and signed quantities (Doctoral dissertation). http://www.libs.uga.edu/etd/.
  55. Varma, S., McCandliss, B. D. & Schwartz, D. L. (2008). Scientific and pragmatic challenges for bridging education and neuroscience. Educational Research, 37(3), 140–152.CrossRefGoogle Scholar
  56. Varma, S. & Schwartz, D. L. (2008). How should educational neuroscience conceptualise the relation between cognition and brain function? Mathematical reasoning as a network process. Educational Research, 50(2), 149–161.CrossRefGoogle Scholar
  57. von Glasersfeld, E. (1995). Radical constructivism: A way of knowing and learning. London: Routledge Falmer.CrossRefGoogle Scholar
  58. Wagner, S. H. & Walters, J. (1982). A longitudinal analysis of early number concepts: From numbers to number. In G. E. Forman (Ed.), Action and thought: From sensorimotor schemes to symbolic operations (pp. 137–161). New York: Academic.Google Scholar
  59. Wang, Y., Lin, L., Kuhl, P. & Hirsch, J. (2007). Mathematical and linguistic processing differs between native and second languages: An fMRI study. Brain Imaging and Behavior, 1, 68–82.CrossRefGoogle Scholar
  60. Westermann, G., Mareschal, D., Johnson, M. H., Sirois, S., Spratling, M. W. & Thomas, M. S. C. (2007). Neuroconstructivism. Developmental Science, 10, 75–83.CrossRefGoogle Scholar
  61. Wilkins, J. & Norton, A. (2011). The splitting loope. Journal for Research in Mathematics Education, 42(4), 386–406.Google Scholar
  62. Wilkinson, D. T. & Halligan, P. W. (2003). Stimulus symmetry affects the bisection of figures but not lines: Evidence from event-related fMRI. NeuroImage, 20, 1756–1764.CrossRefGoogle Scholar

Copyright information

© National Science Council, Taiwan 2014

Authors and Affiliations

  1. 1.Virginia TechBlacksburgUSA

Personalised recommendations