Advertisement

ANALYZING THE RESPONSES OF 7 – 8 YEAR OLDS WHEN SOLVING PARTITIONING PROBLEMS

  • Edelmira BadilloEmail author
  • Vicenç Font
  • Mequè Edo
Article

abstract

We analyze the mathematical solutions of 7- to 8-year-old pupils while individually solving an arithmetic problem. The analysis was based on the “configuration of objects,” an instrument derived from the onto-semiotic approach to mathematical knowledge. Results are illustrated through a number of cases. From the analysis of mathematical solutions, we infer the use of iconic representations as a counting tool for the demonstrative nature of arguments developed by pupils.

KEY WORDS

distribution problems mathematical practice mathematical representations OSA approach problem solving 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barmby, P., Harries, T., Higgins, S. & Suggate, J. (2009). The array representation and primary children’s understanding and reasoning in multiplication. Educational Studies in Mathematics, 70(3), 217–241.CrossRefGoogle Scholar
  2. Bosch, M. A., Castro, E. & Segovia, I. (2007). El pensamiento multiplicativo en los primeros niveles: Una investigación en curso. PNA, 1(4), 179–190.Google Scholar
  3. Carpenter, T., Ansell, E., Franke, M., Fennema, E. & Weisbeck, L. (1993). Models of problem solving: A study of kindergarten children’s problem-solving processes. Journal for Research in Mathematics Education, 24(5), 428–441.CrossRefGoogle Scholar
  4. Charles, K. & Nason, R. (2000). Young children’s partitioning strategies. Educational Studies in Mathematics Education, 43(2), 191–221.CrossRefGoogle Scholar
  5. Davis, G. & Hunting, R. P. (1990). Spontaneous partitioning: Pre-schoolers and discrete items. Educational Studies in Mathematics, 21(4), 367–374.CrossRefGoogle Scholar
  6. Edo, M., Planas, N. & Badillo, E. (2009). Mathematical learning in a context of play. European Early Childhood Education Research Journal, 17(3), 325–341.CrossRefGoogle Scholar
  7. Fagnant, A. & Vlassis, J. (2013). Schematic representations in arithmetical problem solving: Analysis of their impact on grade 4 pupils. Educational Studies in Mathematics. doi: 10.1007/10649-013-9476-4.Google Scholar
  8. Font, V., Godino, J. D. & Gallardo, J. (2013). The emergence of objects from mathematical practices. Educational Studies in Mathematics, 82, 97–124.CrossRefGoogle Scholar
  9. Fosnot, C. T. & Dolk, M. (2001). Young mathematicians at work: Constructing multiplication and division. Portsmouth, N.H.: Heinemann.Google Scholar
  10. Fuson, K. & Li, Y. (2009). Cross-cultural issues in linguistic, visual-quantitative, and written-numeric support for mathematical thinking. ZDM-The International Journal on Mathematics Education, 41(6), 793–808.CrossRefGoogle Scholar
  11. Godino, J. D., Font, V., Wilhelmi, M. & Lurduy, O. (2011). Why is the learning of elementary arithmetic concepts difficult? Semiotic tools for understanding the nature of mathematical objects. Educational Studies in Mathematics, 77(2–3), 247–265.CrossRefGoogle Scholar
  12. Harries, A. & Barmby, P. W. (2007). Representing and understanding multiplication. Research in Mathematics Education, 9, 33–45.CrossRefGoogle Scholar
  13. Hegarty, M. & Kozhevnikov, M. (1999). Types of visual-spatial representations and mathematical problem solving. Journal of Educational Psychology, 91, 684–689.CrossRefGoogle Scholar
  14. Kintsch, W. & Greeno, J. (1985). Understanding and solving word arithmetic problems. Psychological Review, 92(1), 109–129.CrossRefGoogle Scholar
  15. Mulligan, J. & Mitchelmore, M. C. (1997). Young children’s intuitive models of multiplication and division. Journal for Research in Mathematics Education, 28(3), 309–330.CrossRefGoogle Scholar
  16. Novick, L. R. (2006). Understanding spatial diagram structure: An analysis of hierarchies, matrices, and networks. The Quarterly Journal of Experimental Psychology, 59(10), 1826–1856.CrossRefGoogle Scholar
  17. Nunes, T., Bryant, P., Burman, D., Bell, D., Evans, D. & Hallett, D. (2009). Deaf children’s informal knowledge of multiplicative reasoning. Journal of Deaf Studies and Deaf Education, 14(2), 260–277.CrossRefGoogle Scholar
  18. Pantziara, M., Gagatsis, A. & Elia, I. (2009). Using diagrams as tools for the solution of non-routine mathematical problems. Educational Studies in Mathematics, 72, 39–60.CrossRefGoogle Scholar
  19. Reusser, K. (1988). Problem solving beyond the logic of things: Contextual effects on understanding and solving word problems. Instructional Science, 17, 309–338.CrossRefGoogle Scholar
  20. Rubin, A., Storeygard, J. & Koile, K. (2013). Supporting special needs pupils in drawing mathematical representations. In Proceedings of the Workshop on the Impact of Pen and Touch Technology on Education (WIPTTE), March 21–23. Los Angeles and Malibu California: Pepperdine University.Google Scholar
  21. Saundry, C. & Nicol, C. (2006). Drawing as problem-solving: Young children’s mathematical reasoning through pictures. In J. Novotná, H. Moraová, M. Krátká & N. Stehlíková (Eds.), Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education (Vol. 5, pp. 57–63). Prague, Czech Republic: PME.Google Scholar
  22. Smith, S. P. (2003). Representation in school mathematics: Children’s representations of problems. In J. Kilpatrick, W. G. Martin & D. Schifter (Eds.), A Research Companion to Principles and Standards for School Mathematics (pp. 263–274). Reston, VA: NCTM.Google Scholar
  23. Uesaka, Y., Manalo, E. & Ichikawa, S. (2007). What kinds of perceptions and daily learning behaviors promote pupils’ use of diagrams in mathematics problem solving? Learning and Instruction, 17, 322–335.CrossRefGoogle Scholar
  24. Vicente, S., Orrantia, J. & Verschaffel, L. (2008). Influencia del conocimiento matemático y situacional en la resolución de problemas aritméticos verbales: Ayudas textuales y gráficas. Infancia y Aprendizaje, 31(4), 463–483.CrossRefGoogle Scholar
  25. Warfield, J. (2001). Teaching kindergarten to solve word problems. Early Childhood Educational Journal, 28(3), 127–138.CrossRefGoogle Scholar
  26. Woleck, K. R. (2001). Listen to their pictures: An investigation of children’s mathematical drawings. In A. Couco (Ed.), The roles of representation in school mathematics (pp. 215–227). Reston, VA: NCTM.Google Scholar

Copyright information

© National Science Council, Taiwan 2014

Authors and Affiliations

  1. 1.Departament de Didàctica de la Matemàtica i de les Ciències Experimentals, Facultat d’EducacióUniversitat Autònoma De BarcelonaBarcelonaSpain
  2. 2.Departament de Didàctica de les CCEE i la Matemàtica, Facultat de Formació del ProfessoratUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations