Advertisement

THE ARITHMETICAL MACHINE ZERO  +  1 IN MATHEMATICS LABORATORY: INSTRUMENTAL GENESIS AND SEMIOTIC MEDIATION

  • Michela MaschiettoEmail author
Article

Abstract

This paper presents the analysis of two teaching experiments carried out in the context of the mathematics laboratory in a primary school (grades 3 and 4) with the use of the pascaline Zero  +  1, an arithmetical machine. The teaching experiments are analysed by coordinating two theoretical frameworks, i.e. the instrumental approach and the Theory of Semiotic Mediation. The paper focuses on the analysis of the semiotic potential of the pascaline and students’ instrumental genesis, on the functions of schemes and gestures of usage.

Key words

arithmetic artefact instrumental genesis mathematics laboratory pascaline semiotic mediation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AA.VV. UMI (2004). In G. Anichini, F. Arzarello, L. Ciarrapico & O. Robutti (Eds.), Matematica 2003. La matematica per il cittadino. Lucca: Matteoni stampatore.Google Scholar
  2. Artigue, M. (2002). Learning mathematics in a CAS environment: the genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7, 245–274.CrossRefGoogle Scholar
  3. Arzarello, F. Paola, D., Robutti, O. & Sabena C. (2009). Gestures as semiotic resources in the mathematics classroom. In L. Edwards, L. Radford & F. Arzarello (Eds.), Educational Studies in Mathematics 70(2), 97–109.Google Scholar
  4. Bartolini Bussi, M.G. & Borba, M. (Eds), (2010). Historical aspects of the use of technology and devices in ICMEs and ICMI. ZDM The International Journal on Mathematics Education, 42 (1).Google Scholar
  5. Bartolini Bussi, M. G. & Mariotti, M. A. (2008). Semiotic mediation in the mathematics classroom: artifacts and signs after a Vygotskian perspective. In L. English (Ed.), Handbook of int. research in mathematics education (2nd ed., pp. 746–783). New York: Routledge.Google Scholar
  6. Béguin, P. & Rabardel, P. (2000). Designing for instrument-mediated activity. Scandinavian Journal of Information Systems, 12, 173–190.Google Scholar
  7. Canalini Corpacci, R. & Maschietto, M. (2011). Gli artefatti-strumenti e la comprensione della notazione posizionale nella scuola primaria. La ‘pascalina’ Zero+1 nella classe: genesi strumentale. L’Insegnamento della Matematica e delle Scienze Integrate, 34A(2), 161–188.Google Scholar
  8. Casarini, A. & Clementi, F. (2010). Numeri… in macchina: alla scoperta della pascalina. In USR E-R, ANSAS E-R, Regione Emilia-Romagna & F. Martignone (Eds.), Scienze e Tecnologie in Emilia-Romagna, vol. 2. Napoli: Tecnodid Editrice, 141–145.Google Scholar
  9. Chiappini, G. & Reggiani, M. (2004). Toward a didactic practice based on mathematics. In M.A. Mariotti (Ed.), Proceedings of CERME 3. http://www.dm.unipi.it/~didattica/CERME3/proceedings/Groups/TG9/TG9_Chiappini_cerme3.pdf. Accessed May 2013.
  10. Church, R. B. & Goldin-Meadow, S. (1986). The mismatch between gesture and speech as an index of transitional knowledge. Cognition, 23, 43–71.CrossRefGoogle Scholar
  11. Drijvers, P., Kieran, C. & Mariotti, M. A. (2010). Integrating technology into mathematics education: theoretical perspectives. In C. Hoyles & J.-B. Lagrange (Eds.), Mathematics education and technology-rethinking the terrain (pp. 89–132). New York: Springer.Google Scholar
  12. Giacardi, L. (2012). The emergence of the idea of the mathematics laboratory at the turn of the twentieth century. In K. Bjarnadóttir, F. Furinghetti, J. M. Matos & G. Schubring (Eds.), “Did where you stand” 2, Proceedings of the Second Int. Conference on the History of Mathematics Education (pp. 203–225). Caparica: UIED.Google Scholar
  13. Hasan, R. (2005). Semiotic mediation, language and society: three exotripic theories—Vygotsky, Halliday and Bernstein. In J. Webster (Ed.) Language, society and consciousness: the collected works of Ruqaya Hasan, vol 1. London: Equinox. http://lchc.ucsd.edu/mca/Paper/JuneJuly05/HasanVygHallBernst.pdf. Accessed May 2013.
  14. Hoyles, C. & Lagrange, J.-B. (Eds.). (2010). Mathematics education and technology: rethinking the terrain. New York: Springer.Google Scholar
  15. Mariotti, M. A. (2012). ICT as opportunities for teaching-learning in a mathematics classroom: the semiotic potential of artifacts. In T. Y. Tso (Ed.), Proc. of the 36th Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 25–40). Taipei: PME.Google Scholar
  16. Maschietto, M. (2011). Instrumental geneses in mathematics laboratory. In B. Ubuz (Ed.), Proc. of the 35th Conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 121–128). Ankara: PME.Google Scholar
  17. Maschietto, M. & Bartolini Bussi, M. G. (2009). Working with artefacts: gestures, drawings and speech in the construction of the mathematical meaning of the visual pyramid. Educational Studies in Mathematics, 70(2), 143–157.CrossRefGoogle Scholar
  18. Maschietto, M. & Ferri, F. (2007). Artefacts, schèmes d’utilisation et significations arithmétiques. In J. Szendrei (Ed.), Mathematical activity in classroom practice and as research object in didactics: two complementary perspectives, Proceeding of the CIEAEM 59, Dobogókő, Hungary. 179–183. http://math.unipa.it/~grim/. Accessed May 2013.
  19. Maschietto, M. & Trouche, L. (2010). Mathematics learning and tools from theoretical, historical and practical points of view: the productive notion of mathematics laboratories. ZDM The International Journal on Mathematics Education, 42(1), 33–47.CrossRefGoogle Scholar
  20. Norman, D. A. (1993). Things that make us smart. London: Addison-Wesley.Google Scholar
  21. Peano, G. (1957/1959). Opere scelte. In Ugo Cassina (Ed.). Roma: Cremonese.Google Scholar
  22. Prediger, S., Bikner-Ahsbahs, A. & Arzarello, F. (2008). Networking strategies and methods for connecting theoretical approaches: first steps towards a conceptual framework. ZDM The International Journal on Mathematics Education, 40, 165–178.CrossRefGoogle Scholar
  23. Rabardel, P. (1995/2002). Les hommes et les technologies. Une approche cognitives des instruments contemporains. Paris: Armand Colin. (English version: (2002). People and technology. A cognitive approach to contemporary instruments. http://ergoserv.psy.univ-paris8.fr/. Accessed May 2013).
  24. Savioli, K. (2005). Punti di forza per l’utilizzo della pascalina “Zero+1” in classe. Rassegna dell’istruzione, N. 1-2, 36-37. http://www.rassegnaistruzione.it/rivista/index.html. Accessed May 2013.
  25. Trouche, L. (2004). Managing complexity of human/machine interactions in computerized learning environments: guiding student’s command process through instrumental orchestrations. International Journal of Computers for Mathematical Learning, 9(3), 281–307.CrossRefGoogle Scholar
  26. Trouche, L. & Drijvers, P. (2010). Handheld technology for mathematics education: flashback into the future. ZDM The International Journal on Mathematics Education, 42(7), 667–681.CrossRefGoogle Scholar
  27. Vérillon, P. & Rabardel, P. (1995). Cognition and artifacts: a contribution to the study of thought in relation to instrument activity. European Journal of Psychology of Education, 9(3), 77–101.CrossRefGoogle Scholar
  28. Vygotsky, L. S. (1934/1990). Myšlenie i reč’ Psichologičeskie issledovanija (Italian version: (1990). Pensiero e linguaggio. In L. Mecacci (Ed.). Bari: Laterza).Google Scholar

Copyright information

© National Science Council, Taiwan 2013

Authors and Affiliations

  1. 1.Department of Education and HumanitiesUniversity of Modena e Reggio EmiliaReggio EmiliaItaly

Personalised recommendations