Advertisement

COGNITIVE LOAD FOR CONFIGURATION COMPREHENSION IN COMPUTER-SUPPORTED GEOMETRY PROBLEM SOLVING: AN EYE MOVEMENT PERSPECTIVE

  • John Jr-Hung Lin
  • Sunny S. J. LinEmail author
Article

Abstract

The present study investigated (a) whether the perceived cognitive load was different when geometry problems with various levels of configuration comprehension were solved and (b) whether eye movements in comprehending geometry problems showed sources of cognitive loads. In the first investigation, three characteristics of geometry configurations involving the number of informational elements, the number of element interactivities and the level of mental operations were assumed to account for the increasing difficulty. A sample of 311 9th grade students solved five geometry problems that required knowledge of similar triangles in a computer-supported environment. In the second experiment, 63 participants solved the same problems and eye movements were recorded. The results indicated that (1) the five problems differed in pass rate and in self-reported cognitive load; (2) because the successful solvers were very swift in pattern recognition and visual integration, their fixation did not clearly show valuable information; (3) more attention and more time (shown by the heat maps, dwell time and fixation counts) were given to read the more difficult configurations than to the intermediate or easier configurations; and (4) in addition to number of elements and element interactivities, the level of mental operations accounts for the major cognitive load sources of configuration comprehension. The results derived some implications for design principles of geometry diagrams in secondary school mathematics textbooks.

Key words

cognitive load configuration comprehension eye movement geometry diagram problem solving 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison, P. D. (1999). Logistic regression using the SAS system: Theory and application: SAS Publishing.Google Scholar
  2. Barrett, K. C., Morgan, J. & George, A. (2005). SPSS for intermediate statistics: Use and interpretation: Psychology Press.Google Scholar
  3. Bobis, J., Sweller, J. & Cooper, M. (1994). Demands imposed on primary-school students by geometric-models. Contemporary Educational Psychology, 19(1), 108–117.CrossRefGoogle Scholar
  4. Boucheix, J. M. & Lowe, R. K. (2010). An eye tracking comparison of external pointing cues and internal continuous cues in learning with complex animations. Learning and Instruction, 20(2), 123–135. doi: 10.1016/j.learninstruc.2009.02.015.CrossRefGoogle Scholar
  5. Carpenter, P. A. & Just, M. A. (1978). Eye fixations during mental rotation. Eye movements and the higher psychological functions, 115–133.Google Scholar
  6. Carpenter, P. A. & Shah, P. (1998). A model of the perceptual and conceptual processes in graph comprehension. Journal of Experimental Psychology-Applied, 4(2), 75–100. doi: 10.1037/1076-898x.4.2.75.CrossRefGoogle Scholar
  7. Chandler, P. & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and Instruction, 8(4), 293–332.CrossRefGoogle Scholar
  8. Epelboim, J. & Suppes, P. (2001). A model of eye movements and visual working memory during problem solving in geometry. Vision Research, 41(12), 1561–1574. doi: 10.1016/S0042-6989(00)00256-X.CrossRefGoogle Scholar
  9. Gillan, D. J. (1995). Visual arithmetic, computational graphics, and the spatial metaphor. Human Factors, 37(4), 766–780. doi: 10.1518/001872095778995571.CrossRefGoogle Scholar
  10. Grant, E. R. & Spivey, M. J. (2003). Eye movements and problem solving: Guiding attention guides thought. Psychological Science, 14(5), 462–466. doi: 10.1111/1467-9280.02454.CrossRefGoogle Scholar
  11. Hart, S. G. & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. Human Mental Workload, 1, 139–183.CrossRefGoogle Scholar
  12. Hegarty, M. & Just, M. A. (1993). Constructing mental models of machines from text and diagrams. Journal of Memory and Language, 32(6), 717–742. doi: 10.1006/jmla.1993.1036.CrossRefGoogle Scholar
  13. Hegarty, M., Mayer, R. E. & Green, C. E. (1992). Comprehension of arithmetic word problems: Evidence from students’ eye fixation. Journal of Educational Psychology, 84(1), 76–84. doi: 10.1037/0022-0663.84.1.76.CrossRefGoogle Scholar
  14. Hegarty, M., Mayer, R. E. & Monk, C. A. (1995). Comprehension of arithmetic word problems: A comparison of successful and unsuccessful problem solvers. Journal of Educational Psychology, 87(1), 18–32. doi: 10.1037/0022-0663.87.1.18.CrossRefGoogle Scholar
  15. Holm, A., Lukander, K., Korpela, J., Sallinen, M. & Muller, K. M. (2009). Estimating brain load from the EEG. The Scientific World Journal, 9, 639.CrossRefGoogle Scholar
  16. Hyona, J. (2010). The use of eye movements in the study of multimedia learning. Learning and Instruction, 20(2), 172–176. doi: 10.1016/j.learninstruc.2009.02.013.CrossRefGoogle Scholar
  17. Just, M. A. & Carpenter, P. A. (1985). Cognitive coordinate systems: Accounts of mental rotation and individual differences in spatial ability. Psychological Review, 92(2), 137. doi: 10.1037/0033-295X.92.2.137.CrossRefGoogle Scholar
  18. Laborde, C. (2005). The hidden role of diagrams in students: Construction of meaning in geometry. Meaning in Mathematics Education, 159–179.Google Scholar
  19. Larkin, J. H. & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11(1), 65–100. doi: 10.1016/S0364-0213(87)80026-5.CrossRefGoogle Scholar
  20. Mayer, R. E. (2010). Unique contributions of eye-tracking research to the study of learning with graphics. Learning and Instruction, 20(2), 167–171. doi: 10.1016/j.learninstruc.2009.02.012.CrossRefGoogle Scholar
  21. Meyer, K., Rasch, T. & Schnotz, W. (2010). Effects of animation’s speed of presentation on perceptual processing and learning. Learning and Instruction, 20(2), 136–145. doi: 10.1016/j.learninstruc.2009.02.016.CrossRefGoogle Scholar
  22. O’Leary, Z. (2004). The essential guide to doing research: Sage.Google Scholar
  23. Ozcelik, E., Arslan-Ari, I. & Cagiltay, K. (2010). Why does signaling enhance multimedia learning? Evidence from eye movements. Computers in Human Behavior, 26(1), 110–117. doi: 10.1016/j.chb.2009.09.001.CrossRefGoogle Scholar
  24. Paas, F. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive-load approach. Journal of Educational Psychology, 84(4), 429–434. doi: 10.1037/0022-0663.84.4.429.CrossRefGoogle Scholar
  25. Paas, F., Renkl, A. & Sweller, J. (2003a). Cognitive load theory and instructional design: Recent developments. Educational Psychologist, 38(1), 1–4.Google Scholar
  26. Paas, F., Tuovinen, J. E., Tabbers, H. & Van Gerven, P. W. M. (2003b). Cognitive load measurement as a means to advance cognitive load theory. Educational Psychologist, 38(1), 63–71.CrossRefGoogle Scholar
  27. Paas, F. & van Merriënboer, J. J. G. (1994). Variability of worked examples and transfer of geometrical problem-solving skills: A cognitive-load approach. Journal of Educational Psychology, 86(1), 122–133. doi: 10.1037/0022-0663.86.1.122.CrossRefGoogle Scholar
  28. Paas, F. & van Merriënboer, J. J. G. (2006). Optimising worked example instruction: Different ways to increase germane cognitive load. Learning and Instruction, 16(2), 87–91.CrossRefGoogle Scholar
  29. Park, B., Moreno, R., Seufert, T. & Brunken, R. (2010). Does cognitive load moderate the seductive details effect? A multimedia study. Computers in Human Behavior.Google Scholar
  30. Plass, J. L., Moreno, R. & Brünken, R. (2010). Cognitive load theory: Cambridge University Press.Google Scholar
  31. Ratwani, R. M., Trafton, J. G. & Boehm-Davis, D. A. (2008). Thinking graphically: Connecting vision and cognition during graph comprehension. Journal of Experimental Psychology-Applied, 14(1), 36–49. doi: 10.1037/1076-898X.14.1.36.CrossRefGoogle Scholar
  32. Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 124(3), 372–422. doi: 10.1037/0033-2909.124.3.372.CrossRefGoogle Scholar
  33. Schwonke, R., Renkl, A., Salden, R. & Aleven, V. (2010). Effects of different ratios of worked solution steps and problem solving opportunities on cognitive load and learning outcomes. Computers in Human Behavior.Google Scholar
  34. Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257–285. doi: 10.1016/0364-0213(88)90023-7.CrossRefGoogle Scholar
  35. Sweller, J. Ayres, P., & Kalyuga, S. (2011). Cognitive load theory: Springer.Google Scholar
  36. Sweller, J. & Chandler, P. (1991). Evidence for cognitive load theory. Cognition and Instruction, 8(4), 351–362.CrossRefGoogle Scholar
  37. Sweller, J. Mawer, R. F. & Ward, M. R. (1983). Development of expertise in mathematical problem solving. Journal of Experimental Psychology-General, 112(4), 639–661. doi: 10.1037/0096-3445.112.4.639.CrossRefGoogle Scholar
  38. Xu, H. (2006). Design and analysis of experiments, volume 2: Advanced experimental design. Technometrics, 48(4), 571–571. doi: 10.1198/tech.2006.s433.CrossRefGoogle Scholar

Copyright information

© National Science Council, Taiwan 2013

Authors and Affiliations

  1. 1.National Chiao Tung UniversityHsin-ChuRepublic of China

Personalised recommendations