Advertisement

WHAT CHARACTERIZES THE ALGEBRAIC COMPETENCE OF NORWEGIAN UPPER SECONDARY SCHOOL STUDENTS? EVIDENCE FROM TIMSS ADVANCED

  • Ida Friestad PedersenEmail author
Article
  • 410 Downloads

Abstract

Algebra is the fundamental language of mathematics, and a profound understanding of school algebra is an important prerequisite for further studies in mathematical sciences. The aim of this study is to characterize the algebraic competence of the Norwegian upper secondary school students participating in Trends in International Mathematics and Science Study (TIMSS) Advanced. Based on theoretical conceptualizations of school algebra (Kieran, 2004) and of mathematical competence (Niss & Højgaard, 2011), a set of item descriptors have here been developed. Each of the algebra items in the TIMSS Advanced mathematics test have then been evaluated with respect to these descriptors, and correlations between student performance and item descriptors have been calculated. The results show that Norwegian upper secondary school students tend to perform weakly on items that place high demands on symbol manipulation. Furthermore, these students’ strength is in tasks that are placed in an extra-mathematical (applied) context, that require text comprehension, where students are expected to generate the mathematical expressions needed to find a solution, but that place low demands on student ability to manipulate symbolic expressions. Hence, the results of this study suggests that if Norwegian upper secondary school students’ mastery of algebra is to be promoted, it seems reasonable to devote more teaching resources to the transformational aspects of algebraic activity, i.e. to developing their ability to efficiently manipulate symbolic expressions.

Key words

algebra competence item analysis TIMSS Advanced upper secondary school 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alseth, B., Breiteig, T. & Brekke, G. (2003). Endringer og utvikling ved R97 som bakgrunn for videre planlegging og justering: matematikkfaget som kasus TELEMARKSFORSKNING-NOTODDEN. Senter for pedagogisk forsking og utviklingsarbeid Google Scholar
  2. Angell, C., Kjærnsli, M. & Lie, S. (1999). Hva i all verden skjer i realfagene i videregående skole? Oslo, Norway: Universitetsforlaget.Google Scholar
  3. Angell, C., Lie, S. & Rohatgi, A. (2011). TIMSS Advanced 2008: Fall i fysikk-kompetanse i Norge og Sverige. NorDiNa, 7(1), 17–31.Google Scholar
  4. Arora, A., Foy, P., Martin, M. O. & Mullis, I. V. S. (Eds.). (2009). TIMSS Advanced 2008 technical report. Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Boston CollegeGoogle Scholar
  5. Bardini, C., Pierce, R. U. & Stacey, K. (2004). Teaching linear functions in context with graphics calculators: Students’ responses and the impact of the approach on their use of algebraic symbols. International Journal of Science and Mathematics Education, 2(3), 353–376.CrossRefGoogle Scholar
  6. Bednarz, N., Kieran, C. & Lee, L. (1996). Approaches to algebra. Perspectives for research and teaching. Dordrecht, the Netherlands: Kluwer Academic.CrossRefGoogle Scholar
  7. Drijvers, P., Goddijn, A. & Kindt, M. (2010). Algebra education: Exploring topics and themes. In P. Drijvers (Ed.), Secondary algebra education (pp. 5–26). Rotterdam, the Netherlands: Sense.Google Scholar
  8. Garden, R. A., Lie, S., Robitaille, D. F., Angell, C., Martin, M. O., Mullis, I. V. S. & Alka, A. (2006). TIMSS Advanced 2008 assessment frameworks. Boston: TIMSS & PIRLS International Study Center, Lynch School of Education, Boston College.Google Scholar
  9. Grønmo, L. S. (2010). Norway: Low achievement in mathematics in compulsory school as evidenced by TIMSS and PISA. In B. Sriraman, C. Bergsten, S. Goodchild, G. Pálsdóttir, B. Dahl & L. Haapasalo (Eds.), The first sourcebook on Nordic research in mathematics education. Charlotte, NC: Information Age.Google Scholar
  10. Grønmo, L. S., Bergem, O., K., Kjærnsli, M., Lie, S. & Turmo, A. (2004). Hva i all verden har skjedd i realfagene? Norske elevers prestasjoner i matematikk og naturfag i TIMSS 2003: Acta Didactica, ILS, UiO.Google Scholar
  11. Grønmo, L. S. & Olsen, R. V. (2006). TIMSS versus PISA: The case of pure and applied mathematics. The Second IEA International Research Conference: Proceedings of the IRC-2006.Google Scholar
  12. Grønmo, L. S., Onstad, T. & Pedersen, I. F. (2010). Matematikk i motvind. TIMSS Advanced 2008 i videregående skole. Oslo, Norway: Unipub.Google Scholar
  13. Heid, M. K. & Edwards, M. T. (2001). Computer algebra systems: Revolution or retrofit for today’s mathematics classrooms? Theory Into Practice, 40(2), 128–136.CrossRefGoogle Scholar
  14. Huntley, M. A., Rasmussen, C. L., Villarubi, R. S., Sangtong, J. & Fey, J. T. (2000). Effects of Standards-based mathematics education: A study of the Core-Plus Mathematics Project algebra and functions strand. Journal of Research in Mathematics Education, 31(3), 328–361.CrossRefGoogle Scholar
  15. KD. (2006). Matematikk for realfag—Programfag i studiespesialiserende utdanningsprogram. Retrieved 05.05.2013 from http://www.udir.no/kl06/MAT3-01/Hele/
  16. Kendal, M. & Stacey, K. (2004). Algebra: A world of difference. In K. Stacey, H. Chick & M. Kendal (Eds.), The future of the teaching and learning of algebra. The 12 th ICMI study (Vol. 8, pp. 329–346). Dordrecht, the Netherlands: Kluwer Academic.Google Scholar
  17. Kieran, C. (1996). The changing face of school algebra. In C. Alsina, J. Alvarez, B. Hodgson, C. Laborde & A. Pérez (Eds.), 8th International Congress on Mathematical Education: Selected lectures (pp. 271–290). Seville, Spain: S.A.E.M. Thales.Google Scholar
  18. Kieran, C. (2004). The core of algebra: Reflections on its main activities. In K. Stacey, H. Chick & M. Kendal (Eds.), The future of the teaching and learning of algebra. The 12 th ICMI study (Vol. 8, pp. 21–33). Dordrecht, the Netherlands: Kluwer Academic.Google Scholar
  19. Kieran, C. (2007). Learning and teaching algebra at the middle school through college levels. Building meaning for symbols and their manipulation. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning (Vol. 2). Charlotte, NC: Information Age.Google Scholar
  20. Kieran, C. & Drijvers, P. (2006). The co-emergence of machine techniques, paper-and-pencil techniques, and theoretical reflection: A study of CAS use in secondary school algebra. International Journal of Computers for Mathematical Learning, 11(2), 205–263.CrossRefGoogle Scholar
  21. Kjærnsli, M., Lie, S., Olsen, R. V. & Roe, A. (2007). Tid for tunge løft. Norske elevers kompetanse i naturfag, lesing og matematikk i PISA 2006. Oslo, Norway: Universitetsforlaget.Google Scholar
  22. Klieme, E. & Baumert, J. (2001). Identifying national cultures of mathematics education: Analysis of cognitive demands and differential item functioning in TIMSS. European Journal of Psychology of Education, 16(3), 385–402.CrossRefGoogle Scholar
  23. KUF. (2000). Læreplan for videre opplæring Matematikk.Studieretningsfag i studieretning for allmenne, økonomiske og administrative fag. Retrieved 05.05.2013 from http://www.udir.no/Lareplaner/Finn-lareplan/Lareplanverket-for-videregaende-opplaring-R94/#Felles allmenne fag
  24. KUF (1999). Læreplan for videregående opplæring Matematikk. Felles allment fag i alle studieretninger. Retrieved 05.05.2013 from http://www.udir.no/Lareplaner/Finn-lareplan/Lareplanverket-for-videregaende-opplaring-R94/#Felles allmenne fag
  25. Lannin, J. K. (2005). Generalization and justification: The challenge of introducing algebraic reasoning through patterning activities. Mathematical Thinking and Learning, 7(3), 231–258.CrossRefGoogle Scholar
  26. Lee, L. (1996). An initiation into algebraic culture through generalization activities. In N. Bednarz, C. Kieran & L. Lee (Eds.), Approaches to algebra. Perspectives for research and teaching. Dordrecht, the Netherlands: Kluwer Academic.Google Scholar
  27. Lie, S., Angell, C. & Rohatgi, A. (2010). Fysikk i fritt fall? TIMSS Advanced 2008 i videregående skole. Oslo, Norway: Unipub.Google Scholar
  28. Llinares, S. & Roig, A. (2008). Secondary school students’ construction and use of mathematical models in solving word problems. International Journal of Science and Mathematics Education, 6(3), 505–532.CrossRefGoogle Scholar
  29. MacGregor, M. (2004). Goals and content of an algebra curriculum for the compulsory years of schooling. In K. Stacey, H. Chick & M. Kendal (Eds.), The future of the teaching and learning of algebra. The 12 th ICMI study (Vol. 8, pp. 311–328). Dordrecht, the Netherlands: Kluwer Academic.Google Scholar
  30. MacGregor, M. & Stacey, K. (1994). Progress in learning algebra: Temporary and persistent difficulties. In B. W. G. Bell, N. Leeson, & J. Geake (Ed.), Proceedings of the Seventeenth Annual Conference of the Mathematics Education Research Group of Australasia (Vol. 2, pp. 403–410).Google Scholar
  31. Mullis, I. V. S. Martin, M. O., Robitaille, D. F. & Foy, P. (2009). TIMSS Advanced international report. Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Boston College.Google Scholar
  32. Niss, M. (2003). Mathematical competencies and the learning of mathematics: The Danish KOM project. In A. Gagatsis & S. Papastavridis (Eds.), 3 rd Mediterranean conference on mathematical education (pp. 115–124). Athens, Greece: Hellenic Mathematical Society and Cyprus Mathematical Society.Google Scholar
  33. Niss, M. & Højgaard, T. (Eds.). (2011). Competencies and mathematical learning. Ideas and inspiration for the development of mathematics teaching and learning in Denmark. Roskilde, Denmark: Roskilde University.Google Scholar
  34. Olsen, R. V. (2005). Achievement tests from an item perspective: an exploration of single item data from the PISA and TIMSS studies, and how such data can inform us about students’ knowledge and thinking in science. Ph.D., University of Oslo, Oslo.Google Scholar
  35. Olsen, R. V. (2006). A Nordic profile of mathematics achievement: Myth or reality? In J. Mejding & A. Roe (Eds.), Northern Lights on PISA 2003—a reflection from the Nordic countries. Copenhagen, Denmark: Nordic Council of Ministers.Google Scholar
  36. Olsen, R. V. & Grønmo, L. S. (2006). What are the characteristics of the Nordic profile in mathematical literacy? In J. Mejding & A. Roe (Eds.), Northern lights on PISA 2003—a reflection from the Nordic countries. Copenhagen, Denmark: Nordic Council of Ministers.Google Scholar
  37. Pedersen, I. F. (2013). Is TIMSS Advanced an appropriate instrument for evaluating mathematical performance at the advanced level of Norwegian upper secondary school? An analysis of curriculum documents and assessment items. Acta Didactica Norge, 7(1), Art-5.Google Scholar
  38. Pierce, R. & Stacey, K. (2004). Monitoring progress in algebra in a CAS active context: Symbol sense, algebraic insight and algebraic expectation. International Journal of Technology in Mathematics Education, 11(1), 3–11.Google Scholar
  39. Rittle-Johnson, B. & Star, J. R. (2007). Does comparing solution methods facilitate conceptual and procedural knowledge? An experimental study on learning to solve equations. Journal of Educational Psychology, 99(3), 561–574.CrossRefGoogle Scholar
  40. Rutkowski, L. & Rutkowski, D. (2009). Trends in TIMSS responses over time: evidence of global forces in education? Educational Research and Evaluation, 15(2), 137–152.CrossRefGoogle Scholar
  41. Schoenfeld, A. H. (1994). What do we know about mathematics curricula? Journal of Mathematical Behavior, 13(1), 55–80.CrossRefGoogle Scholar
  42. Schoenfeld, A. H. (2004). The math wars. Educational Policy, 18, 253–286.Google Scholar
  43. Schoenfeld, A. H. (2007). Issues and tensions in the assessment of mathematical proficiency. In A. H. Schoenfeld (Ed.), Assessing mathematical proficiency (Vol. 53). Berkeley, CA: Mathematical Sciences Research Institute Publications.CrossRefGoogle Scholar
  44. Stacey, K. & Chick, H. (2004). Solving the problem with algebra. In K. Stacey, H. Chick & M. Kendal (Eds.), The future of the teaching and learning of algebra. The 12 th ICMI study (Vol. 8, pp. 1–20). Dordrecht, the Netherlands: Kluwer Academic.Google Scholar
  45. Star, J. R. (2005). Reconceptualizing procedural knowledge. Journal for Research in Mathematics Education, 36(5), 404–411.Google Scholar
  46. Star, J. R. & Rittle-Johnson, B. (2009). Making algebra work: Instructional strategies that deepen student understanding, within and between representations. ERS Spectrum, 27(2), 11–18.Google Scholar
  47. Stein, M. K., Grover, B. W. & Henningsen, M. (1996). Building student capacity for mathematical thinking and reasoning: An analysis of mathematical tasks used in reform classrooms. American Educational Research Journal, 33(2), 455–488.CrossRefGoogle Scholar
  48. Stemler, S. E. (2004). A comparison of consensus, consistency, and measurement approaches to estimating interrater reliability. Practical Assessment, Research and Evaluation, 9(4).Google Scholar
  49. Thompson, D. R. & Senk, S. L. (2001). The effects of curriculum on achievement in second-year algebra: The example of the University of Chicago School Mathematics Project. Journal for Research in Mathematics Education, 32(1), 58–84.CrossRefGoogle Scholar
  50. Yerushalmy, M. (2000). Problem solving strategies and mathematical resources: A longitudinal view on problem solving in a function based approach to algebra. Educational Studies in Mathematics, 43(2), 125–147.CrossRefGoogle Scholar

Copyright information

© National Science Council, Taiwan 2013

Authors and Affiliations

  1. 1.University of OsloOsloNorway

Personalised recommendations