Advertisement

SPACES FOR GEOMETRIC WORK: FIGURAL, INSTRUMENTAL, AND DISCURSIVE GENESES OF REASONING IN A TECHNOLOGICAL ENVIRONMENT

  • Inés Ma Gómez-Chacón
  • Alain KuzniakEmail author
Article

ABSTRACT

The main goal of this research was to assess the effect of a dynamic environment on relationships between the three geneses (figural, instrumental, and discursive) of Spaces for Geometric Work. More specifically, it was to determine whether the interactive geometry program GeoGebra could play a specific role in the geometric work of future teachers. The training reveals education students’ use of intuitive and deductive reasoning as well as their degree of cognitive flexibility in using different facets of geometrical work. The study shows that a perspective on the development of geometric reasoning must be integrated in the development of skills for future teachers. In particular, a focus on the construction of a discursive genesis linked with elements of figural genesis must be added to the traditional focus on instrumental genesis. This reasoning requires in particular a reflection on the role of properties in developing a form of geometry directed by practical (Geometry I) or more axiomatic (Geometry II) goals.

KEY WORDS

geometry initial teacher training mathematics professional knowledge Space for Geometric Work technological environment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7(3), 245–274.CrossRefGoogle Scholar
  2. Coutat, S. (2006). Intégration de la géométrie dynamique dans l’enseignement de la pour favoriser une liaison école-collège. Grenoble: Thèse de l’université J. Fourier.Google Scholar
  3. Coutat, S. & Richard, P. (2011). Les figures dynamiques dans un espace de travail mathématique pour l’apprentissage des propriétés géométriques. Annales de Didactique et de Sciences Cognitives, 16, 97–126.Google Scholar
  4. Duval, R. (2005). Les conditions cognitives de l’apprentissage de la géométrie : développement de la visualisation, différenciation des raisonnements et coordination de leur fonctionnements. Annales de Didactique et de Sciences Cognitives, 10, 5–53.Google Scholar
  5. Gomez-Chacon, I. & Kuzniak, A. (2011). Les Espaces de Travail Géométrique de futurs professeurs en contexte de connaissances technologiques et professionnelles. Annales de didactique et de sciences cognitives, 16, 187–216.Google Scholar
  6. Houdement, C. & Kuzniak, A. (1999a). Un exemple de cadre conceptuel pour l’étude de l’enseignement de la géométrie en formation des maîtres. Educational Studies in Mathematics, 40(3), 283–312.Google Scholar
  7. Houdement, C. & Kuzniak, A. (1999b). Géométrie et Paradigmes géométriques. Petit x, nº 51, 5–21.Google Scholar
  8. Kuhn, T. S. (1966). The structure of scientific revolutions (2nd ed.). Chicago: University of Chicago Press.Google Scholar
  9. Kuzniak, A. (2006). Paradigmes et espaces de travail géométriques. Éléments d’un cadre théorique pour l’enseignement et la formation des enseignants en géométrie. Canadian Journal of Science and Mathematics Education, 6.2, 167–188.Google Scholar
  10. Kuzniak, A. (2011). L'espace de Travail Mathématique et ses genèses. Annales de didactique et de sciences cognitives, 16, 75–96.Google Scholar
  11. Kuzniak, A. & Rauscher, J. C. (2011). How do teachers' approaches on geometrical work relate to geometry students learning difficulties? Educational Studies in Mathematics, 77(1), 129–147.Google Scholar
  12. Laborde, C. (2001). Integration of technology in the design of geometry tasks with cabrigeometry. International Journal of Computers for Mathematical Learning, 6(3), 283–317.CrossRefGoogle Scholar
  13. Lagrange, J. B. (Ed.). (2009). Genèses d’Usages Professionnels des Technologies chez les Enseignants. GUPTEn Rapport final Septembre 2009. Paris: Université Paris-Diderot.Google Scholar
  14. Mithalal, J. (2010). Déconstruction instrumentale et déconstruction dimensionnelle dans le contexte de la géométrie dynamique tridimensionnelle. Grenoble: Thèse de l’université J. Fourier.Google Scholar
  15. Rabardel, P. (1995). Les hommes et les technologies. Une approche cognitive des instruments contemporains (p. 8). Paris: Université Paris.Google Scholar
  16. Trouche, L. (2000). La parabole du gaucher et de la casserole à bec verseur : Etude des processus d’apprentissage dans un environnement de calculatrices symboliques. Educational Studies in Mathematics, 41, 239–264.CrossRefGoogle Scholar
  17. Yerushalmy, M. & Varda, T. (2004). Understanding dynamic behavior: Parent–child relations in dynamic geometry environments. Educational Studies in Mathematics, 57(1), 91–119.Google Scholar

Copyright information

© National Science Council, Taiwan 2013

Authors and Affiliations

  1. 1.Facultad de Ciencias MatemáticasUniversidad Complutense de MadridMadridSpain
  2. 2.Laboratoire de Didactique André RevuzUniversité Paris-DiderotParisFrance

Personalised recommendations