• Shu-Sheng LinEmail author


A scientifically literate person should be able to engage and critique science news reports about socioscientific issues from a variety of information sources. Such engagement involves critical thinking and argumentation skills to determine if claims made are justified by evidence and explained by reasonable explanations. This study explored university students’ critical thinking performance when they read science news reports. Undergraduate science/applied science (n  =  52) and non-science (n  =  52) majors were asked to select a science news report from Internet sources and then to read, critique, and make comments about its contents. The science and non-science majors’ comments and their quality were identified and assessed in terms of analyzing the argument elements—claims and warrants, counterclaims and warrants, rebuttals, qualifiers, and evidence. The results indicated there is significant difference in identifying and formulating evidence favoring science/applied science over non-science majors (p  <  .01). Quality of critical thinking associated with the strength of the arguments made indicated that science/applied science majors demonstrate significantly (p  <  0.05) more advanced patterns than non-science majors. The results suggest that further studies into improving undergraduates’ concepts of evidence in the context of reading and critiquing science news reports are needed.

Key words

argumentation skills critical thinking science news reports university students 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Author. (2010). International Journal of Science and Mathematics Education.Google Scholar
  2. Barker, S. & Julien, H. (2012). Reading for evidence. In S. P. Norris (Ed.), Reading for evidence and interpreting visualization in mathematics and science education (pp. 19–40). Rotterdam, The Netherlands: Sense.CrossRefGoogle Scholar
  3. Brand-Gruwel, S. & Stadtler, M. (2011). Solving information-based problems: Evaluating sources and information. Learning and Instruction, 21(2), 175–179.CrossRefGoogle Scholar
  4. Bråten, I., Strømsø, H. I. & Salmerón, L. (2011). Trust and mistrust when students read multiple information sources about climate change. Learning and Instruction, 21(2), 180–192.CrossRefGoogle Scholar
  5. Cavagnetto, A. R. (2010). Argument to foster scientific literacy: A review of argument interventions in K–12 science contexts. Review of Educational Research, 80(3), 336–371.CrossRefGoogle Scholar
  6. Cottrell, S. (2005). Critical thinking skills: Developing effective analysis and argument. New York, NY: Palgrave Macmillan.Google Scholar
  7. Ennis, R. H. (1996). Critical thinking. Upper Saddle River, NJ: Prentice Hall.Google Scholar
  8. Finocchiaro, M. A. (2005). Arguments about arguments: Systematic, critical and historical essays in logical theory. New York, NY: Cambridge University Press.Google Scholar
  9. Fisher, A. (2001). Critical thinking. New York, NY: Cambridge University Press.Google Scholar
  10. Ford, M. J. (2008). Disciplinary authority and accountability in scientific practice and learning. Science Education, 92(3), 404–423.CrossRefGoogle Scholar
  11. Ford, C. L. & Yore, L. D. (2012). Toward convergence of metacognition, reflection, and critical thinking: Illustrations from natural and social sciences teacher education and classroom practice. In A. Zohar & J. Dori (Eds.), Metacognition in science education: Trends in current research (pp. 251–271). Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
  12. Gomez-Zwiep, S. (2008). Elementary teachers’ understanding of students’ science misconceptions: Implications for practice and teacher education. Journal of Science Teacher Education, 19(5), 437–454.CrossRefGoogle Scholar
  13. Inch, E. S. & Warnick, B. (2010). Critical thinking and communication: The use of reason in argument (6th ed.). New York, NY: Allyn & Bacon.Google Scholar
  14. Jarman, R. & McClune, B. (2007). Developing scientific literacy: Using news media in the classroom. Maidenhead, England: Open University Press.Google Scholar
  15. Kolsto, S. D., Bungum, B., Arnesen, E., Isnes, A., Kristensen, T., Mathiassen, K., Ulvik, M., et al (2006). Science students’ critical examination of scientific information related to socioscientific issues. Science Education, 90(4), 632–655.CrossRefGoogle Scholar
  16. Korpan, C. A., Bisanz, G. L. & Bisanz, J. (1997). Assessing literacy in science: Evaluation of scientific news briefs. Science Education, 81(5), 525–532.CrossRefGoogle Scholar
  17. Kuhn, D. (1991). The skills of argument. Cambridge, MA: Cambridge University Press.CrossRefGoogle Scholar
  18. Kuhn, D. (2010). Teaching and learning science as argument. Science Education, 94(5), 810–824.CrossRefGoogle Scholar
  19. Kuhn, D. & Udell, W. (2007). Coordinating and other perspectives in argument. Thinking & Reasoning, 13(2), 90–104.CrossRefGoogle Scholar
  20. Lubben, F., Sadeck, M., Scholtz, Z. & Braund, M. (2010). Gauging students’ untutored ability in argumentation about experimental data: A South Africa case study. International Journal of Science Education, 32(16), 2143–2166.CrossRefGoogle Scholar
  21. McClune, B. & Jarman, R. (2012). Encouraging and equipping students to engage critically with science in the news: What can we learn from the literature? Studies in Science Education, 48(1), 1–49.CrossRefGoogle Scholar
  22. Mercier, H. & Sperber, D. (2011). Why do humans reason? Arguments for an argumentative theory. Behavior and Brain Sciences, 34(2), 57–74.CrossRefGoogle Scholar
  23. Moon, J. (2008). Critical thinking: An exploration of theory and practice. New York, NY: Routledge.Google Scholar
  24. Norris, S. P. (Ed.). (2012). Reading for evidence and interpreting visualizations in mathematics and science education. Rotterdam, The Netherlands: Sense.Google Scholar
  25. Norris, S. P. & Phillips, L. M. (1994). Interpreting pragmatic meaning when reading popular reports of science. Journal of Research in Science Teaching, 31(9), 947–967.CrossRefGoogle Scholar
  26. Norris, S. P. & Phillips, L. M. (2003). How literacy in its fundamental sense is central to scientific literacy. Science Education, 87(2), 224–240.CrossRefGoogle Scholar
  27. Norris, S. P. & Phillips, L. M. (2012). Reading science: How naïve view of reading hinders so much else. In A. Zohar & Y. J. Dori (Eds.), Metacognition in science education: Trends in current research (pp. 37–56). Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
  28. Norris, S. P., Phillips, L. M., Smith, M. L., Gilbert, S. M., Stange, D. M., Baker, J. J. & Weber, A. C. (2008). Learning to read scientific text: Do elementary school commercial reading programs help? Science Education, 92(5), 765–798.CrossRefGoogle Scholar
  29. Nussbaum, E. M. (2008). Collaborative discourse, argumentation and learning: Preface and literature review. Contemporary Educational Psychology, 33(3), 345–359.CrossRefGoogle Scholar
  30. Nussbaum, E. M. & Edwards, O. V. (2011). Critical questions and argument stratagems: A framework for enhancing and analyzing students’ reasoning practices. Journal of the Learning Sciences, 20(3), 443–488.CrossRefGoogle Scholar
  31. Nussbaum, E. M. & Schraw, G. (2007). Promoting argument–counterargument integration in students’ writing. Journal of Experimental Education, 76(1), 59–92.CrossRefGoogle Scholar
  32. O’Rourke, M. (2005). UI critical thinking handbook. Retrieved from
  33. Organization for Economic Co-operation and Development (2006). PISA report (Chinese version). Retrieved from
  34. Osborne, J., Erduran, S. & Simon, S. (2004). Enhancing the quality of argument in school science. Journal of Research in Science Teaching, 41(10), 994–1020.CrossRefGoogle Scholar
  35. Phillips, L. M. & Norris, S. P. (1999). Interpreting popular reports of science: What happens when the reader’s world meets the world on paper? International Journal of Science Education, 21(3), 317–327.CrossRefGoogle Scholar
  36. Ratcliffe, M. (1999). Evaluation of abilities in interpreting media reports of scientific research. International Journal of Science Education, 21(10), 1085–1099.CrossRefGoogle Scholar
  37. Sadler, T. D. & Donnelly, L. A. (2006). Socioscientific argumentation: The effects of content knowledge and morality. International Journal of Science Education, 28(12), 1463–1488.CrossRefGoogle Scholar
  38. Sadler, T. D. & Fowler, S. R. (2006). The threshold model of content knowledge transfer for socioscientific argumentation. Science Education, 90(6), 986–1004.CrossRefGoogle Scholar
  39. Schalk, H. H., van der Schee, J. A. & Boersma, K. T. (2013). The development of understanding of evidence in pre-university biology education in The Netherlands. Research in Science Education, 43(2), 551–578.CrossRefGoogle Scholar
  40. Scholtz, Z., Braund, M., Hodges, M., Koopman, R. & Lubben, F. (2008). South African teachers’ ability to argue: The emergence of inclusive argumentation. International Journal of Educational Development, 28(1), 21–34.CrossRefGoogle Scholar
  41. Toulmin, S. (1958). The uses of argument. Cambridge, England: Cambridge University Press.Google Scholar
  42. Tytler, R., Duggan, S. & Gott, R. (2001). Dimensions of evidence, the public understanding of science and science education. International Journal of Science Education, 23(8), 815–832.CrossRefGoogle Scholar
  43. Tytler, R. & Peterson, S. (2004). From “try it and see” to strategic explanation: Charactering young children’s scientific reasoning. Journal of Research in Science Teaching, 41(1), 94–118.CrossRefGoogle Scholar
  44. United States National Research Council (2012). In H. Quinn, H. A. Schweingruber & T. Keller (Eds.), A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.Google Scholar
  45. Weinberger, A. & Fischer, F. (2006). A framework to analyze argumentative knowledge construction in computer-supported collaborative learning. Computers & Education, 46(1), 71–95.CrossRefGoogle Scholar
  46. Willingham, D. T. (2007). Critical thinking: Why is it so hard to teach? American Educator, 31(2), 8–19.Google Scholar
  47. Yore, L. D. (2011). Foundations of scientific, mathematical, and technological literacies—Common themes and theoretical frameworks. In L. D. Yore, E. Van der Flier-Keller, D. W. Blades, T. W. Pelton & D. B. Zandvliet (Eds.), Pacific CRYSTAL centre for science, mathematics, and technology literacy: Lessons learned (pp. 23–44). Rotterdam, The Netherlands: Sense.CrossRefGoogle Scholar
  48. Yore, L. D. (2012). Science literacy for all—More than a slogan, logo, or rally flag! In K. C. D. Tan & M. Kim (Eds.), Issues and challenges in science education research: Moving forward (pp. 5–23). Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
  49. Yore, L. D., Bisanz, G. L. & Hand, B. M. (2003). Examining the literacy component of science literacy: 25 years of language arts and science research. International Journal of Science, 25(6), 698–725.Google Scholar
  50. Yore, L. D., Hand, B. M. & Florence, M. K. (2004). Scientists’ views of science, models of writing, and science writing practices. Journal of Research in Science Teaching, 41(4), 338–369.CrossRefGoogle Scholar
  51. Yore, L. D., Pimm, D. & Tuan, H.-L. (2007). The literacy component of mathematical and scientific literacy. International Journal of Science and Mathematics, 5(4), 559–589.Google Scholar
  52. Yu, S.-M. & Yore, L. D. (2012). Quality, evolution, and positional change of university students’ argumentation patterns about organic agriculture during an argument–critique–argument experience. International Journal of Science and Mathematics Education. doi: 10.1007/s10763-012-9373-9. Advance online publication.Google Scholar
  53. Zeidler, D. L., Osborne, J., Erduran, S., Simon, S. & Monk, M. (2003). The role of argument during discourse about socioscientific issues. In D. L. Zeidler (Ed.), The role of moral reasoning on socioscientific issues and discourse in science education (pp. 97–116). Dordrecht, The Netherlands: Kluwer.CrossRefGoogle Scholar

Copyright information

© National Science Council, Taiwan 2013

Authors and Affiliations

  1. 1.National Chiayi UniversityChiayiRepublic of China

Personalised recommendations