Advertisement

IMPROVING MATHEMATICS TEACHER EDUCATION IN GERMANY: EMPIRICAL RESULTS FROM A LONGITUDINAL EVALUATION OF INNOVATIVE PROGRAMS

  • Nils BuchholtzEmail author
  • Gabriele Kaiser
Article

Abstract

Innovative programs for restructuring the entry phase of mathematics teacher education programs have been implemented at various German universities within the last few years. This article reports about the design and the results of a longitudinal evaluation study of the effectiveness of two of these programs aiming to improve mathematics teacher education by altering the conditions in university teaching (the so-called Teacher Education and Development Study TEDS-Telekom). The development of prospective teachers’ professional knowledge in academic mathematical content knowledge, knowledge in elementary mathematics from an advanced standpoint, and mathematical pedagogical content knowledge from the innovative programs were compared to traditional university programs. The study points out that the innovative programs only partially succeeded in improving the acquisition of professional knowledge for prospective mathematics teachers.

Key words

elementary mathematics from an advanced standpoint evaluation study Germany IRT longitudinal study MCK MPCK professional knowledge teacher training program TEDS-M TEDS-Telekom 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ableitinger, C. & Herrmann, A. (2011). Lernen aus Musterlösungen zur Analysis und Linearen Algebra. Ein Arbeits- und Übungsbuch. Wiesbaden: Vieweg + Teubner.CrossRefGoogle Scholar
  2. Adams, R. J., Wilson, M. R. & Wang, W. (1997). The multidimensional random coefficients multinomial logit model. Applied Psychological Measurement, 21, 1–23.CrossRefGoogle Scholar
  3. Anderson, L. W. & Krathwohl, D. R. (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom’s taxonomy of educational objectives. New York: Addison-Wesley.Google Scholar
  4. Beutelspacher, A., Danckwerts, R., Nickel, G., Spieß, S. & Wickel, G. (2011). Mathematik Neu Denken. Impulse für die Gymnasiallehrerausbildung an Universitäten. Wiesbaden: Vieweg  +  Teubner.Google Scholar
  5. Blömeke, S. & Delaney, S. (2012). Assessment of teacher knowledge across countries: A review of the state of research. ZDM—The International Journal on Mathematics Education, 44(3), 223–247.CrossRefGoogle Scholar
  6. Briedis, K., Egorova, T., Heublein, U., Lörz, M., Middendorff, E., Quast, H. & Spangenberg, H. (2008). Studienaufnahme, Studium und Berufsverbleib von Mathematikern. Einige Grunddaten zum Jahr der Mathematik. Forum Hochschule Report No. F09/2008. Hannover: HIS.Google Scholar
  7. Bromme, R. (1994). Beyond subject matter: A psychological topology of teachers' professional knowledge. In R. Biehler, R. W. Scholz, R. Straesser & B. Winkelmann (Eds.), Mathematics didactics as a scientific discipline: The state of the art (pp. 73–88). Dordrecht: Kluwer.Google Scholar
  8. Buchholtz, N., Kaiser, G. & Blömeke, S. (2013). Die Erhebung mathematikdidaktischen Wissens - Konzeptualisierung einer komplexen Domäne. To appear in: Journal for Didactics of Mathematics. (in print)Google Scholar
  9. Cohen, J. (1969). Statistical power analysis for the behavioral sciences. San Diego: Academic.Google Scholar
  10. Crawford, K., Gordon, S., Nicholas, J. & Prosser, M. (1998). Qualitatively different experiences of learning mathematics at university. Learning and Instruction, 8(5), 455–468.CrossRefGoogle Scholar
  11. Deiser, O. & Reiss, K. (2013). Knowledge transformation between secondary school and university mathematics. In A. Peter-Koop, S. Rezat & M. Hattermann (Eds.), Transformation in mathematics education: A new approach. New York: Springer.Google Scholar
  12. Dieter, M., Brugger, P., Schnelle, D. & Törner, G. (2008). Zahlen rund um das Mathematikstudium—Teil 3. Mitteilungen der Deutschen Mathematiker Vereinigung, 16(3), 176–182.Google Scholar
  13. Grigutsch, S., Raatz, U. & Törner, G. (1998). Einstellung gegenüber Mathematik bei Mathematiklehrern. Journal für Mathematik-Didaktik, 19(1), 3–45.Google Scholar
  14. Gueudet, G. (2008). Investigating the secondary–tertiary transition. Educational Studies in Mathematics, 67(3), 237–254.CrossRefGoogle Scholar
  15. Hartig, J. & Höhler, J. (2008). Representation of competencies in multidimensional IRT models with within-item and between-item multidimensionality. Zeitschrift für Psychologie, 216(2), 89–101.CrossRefGoogle Scholar
  16. Hartig, J. & Kühnbach, O. (2006). Estimating change using the plausible value technique within multidimensional Rasch-models. In A. Ittel & H. Merkens (Eds.), Veränderungsmessung und Längsschnittstudien in der Erziehungswissenschaft. Wiesbaden: Verlag für Sozialwissenschaften.Google Scholar
  17. Heublein, U., Schmelzer, R. & Sommer, D. (2008). Die Entwicklung der Studienabbruchquote an den deutschen Hochschulen. Ergebnisse einer Berechnung des Studienabbruchs auf der Basis des Absolventenjahrgangs 2006. Project Report 2008. Hannover: HIS.Google Scholar
  18. Kirsch, A. (1977). Aspekte des Vereinfachens im Mathematikunterricht. Didaktik der Mathematik, 5(2), 87–101.Google Scholar
  19. Klein, F. (1932). Elementary mathematics from an advanced standpoint. Arithmetic, algebra, analysis. Translated from the third German edition by E. R. Hedrick and C. A. Noble. New York: Macmillan. (Originally published in German in 1905)Google Scholar
  20. KMK  =  Conference of [State] Ministers of Education and Cultural Affairs (2011). Lehrereinstellungsbedarf und Lehrereinstellungsangebot in der Bundesrepublik Deutschland. Modellrechnung 2010–2020. Retrieved February 14. 2013, from http://www.kmk.org/fileadmin/pdf/Statistik/BERICHT_MODELLRECHNUNG_online.pdf.
  21. Köller, O., Baumert, J. & Schnabel, K. (1999). Wege zur Hochschulreife. Offenheit des Systems und Sicherung vergleichbarer Standards. Zeitschrift für Erziehungswissenschaft, 2(3), 385–422.Google Scholar
  22. König, J., Blömeke, S., Paine, L., Schmidt, W. H. & Hsieh, F.-J. (2011). General pedagogical knowledge of future middle school teachers: On the complex ecology of teacher education in the United States, Germany, and Taiwan. Journal of Teacher Education, 62(2), 188–201.CrossRefGoogle Scholar
  23. König, J. & Blömeke, S. (2012). Future teachers’ general pedagogical knowledge from a comparative perspective: Does school experience matter? ZDM—The International Journal on Mathematics Teacher Education, 41(3), 341–354.CrossRefGoogle Scholar
  24. Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenhagen: Danish Institute for Educational Research.Google Scholar
  25. Reckase, M. D. (2009). Multidimensional item response theory. New York: Springer.CrossRefGoogle Scholar
  26. Richardson, V. (1996). The role of attitudes and beliefs in learning to teach. In J. Sikula, T. Buttery & E. Guyton (Eds.), Handbook of research on teacher education (2nd ed., pp. 102–119). New York: Macmillan.Google Scholar
  27. Rose, N., von Davier, M. & Xu, X. (2010). Modeling nonignorable missing data with item response theory (IRT). ETS Research Report No. 10–11. Princeton: ETS.Google Scholar
  28. Rost, J. (2004). Lehrbuch Testkonstruktion Testtheorie (2nd ed.). Bern: Huber.Google Scholar
  29. Schmidt, W. H., Blömeke, S. & Tatto, M. T. (2011). Teacher education matters. A study of the mathematics teacher preparation from six countries. New York: Teacher College Press.Google Scholar
  30. Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14.CrossRefGoogle Scholar
  31. Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1–22.Google Scholar
  32. Tatto, M. T., Schwille, J., Senk, S. L., Ingvarson, L., Rowley, G., Peck, R., Bankov, K., Rodriguez, M. & Reckase, M. (2012). Policy, practice, and readiness to teach primary and secondary mathematics in 17 countries. Findings from the IEA Teacher and Development Study in Mathematics (TEDS-M). Amsterdam: International Association for the Evaluation of Educational Achievement (IEA).Google Scholar
  33. Tatto, M. T., Schwille, J., Senk, S., Ingvarson, L., Peck, R. & Rowley, G. (2008). Teacher Education and Development Study in Mathematics (TEDS-M): Policy, practice, and readiness to teach primary and secondary mathematics. Conceptual framework. East Lansing, MI: Teacher Education and Development International Study Center, College of Education, Michigan State University.Google Scholar
  34. Thompson, A. G. (1992). Teachers’ beliefs and conceptions: A synthesis of research. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 127–146). New York: Macmillan.Google Scholar
  35. Walker, C. M. & Beretvas, S. N. (2003). Comparing multidimensional and unidimensional proficiency classifications. Multidimensional IRT as a diagnostic aid. Journal of Educational Measurement, 40(3), 255–275.CrossRefGoogle Scholar
  36. Warm, T. A. (1989). Weighted likelihood estimation of ability in item response models. Psychometrika, 54(3), 427–450.CrossRefGoogle Scholar
  37. Weinert, F. E. (2001). Concept of competence: A conceptual clarification. In D. S. Rychen & L. H. Salganik (Eds.), Defining and selecting key competencies (pp. 45–65). Seattle: Hogrefe & Huber.Google Scholar
  38. Wood, L. (2001). The secondary–tertiary interface. In D. Holton (Ed.), The teaching and learning of mathematics at university level: An ICMI study (pp. 87–98). Dordrecht: Kluwer.Google Scholar
  39. Wu, M., Adams, R. & Wilson, M. (1998). ACER ConQuest. Generalised item response modelling software. Melbourne: Acer.Google Scholar

Copyright information

© National Science Council, Taiwan 2013

Authors and Affiliations

  1. 1.Department of Education 05 – Mathematics Didactics, Faculty of Education, Psychology and Human MovementUniversity of HamburgHamburgGermany

Personalised recommendations