Advertisement

EFFECTS OF FUTURE MATHEMATICS TEACHERS’ AFFECTIVE, COGNITIVE AND SOCIO-DEMOGRAPHIC CHARACTERISTICS ON THEIR KNOWLEDGE AT THE END OF THE TEACHER EDUCATION IN GERMANY AND TAIWAN

  • CHRISTIN LASCHKEEmail author
Article

Abstract

How individual characteristics affect the acquisition of knowledge in teacher education has been widely unexplored thus far. The “Teacher Education and Development Study—Learning to Teach Mathematics (TEDS-M)” provides a database for examining this research question across countries. Based on the Taiwanese and German sample of TEDS-M, the relationship between future lower secondary mathematics teachers’ knowledge and their affective, cognitive and socio-demographic characteristics was examined using multilevel modelling whilst controlling for the teachers’ opportunities to learn. The results reveal that in Germany, teacher knowledge is more strongly affected by future teachers’ individual characteristics than teacher knowledge in Taiwan. These results are interpreted against the background of cultural differences between “the West” and “the East” or “individualism” and “collectivism”, respectively.

Key words

comparative study hierarchical linear model mathematics teacher education teacher education effectiveness teacher knowledge 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, R. & Wu, M. (Eds.). (2002). PISA 2000 technical report. Paris, France: OECD.Google Scholar
  2. Baumert, J., Klieme, E., Neubrand, M., Prenzel, M., Schiefele, U., Schneider, W., Stanat, P., Tillmann, K.-J. & Weiß, M. (Eds.). (2001). PISA 2000: Basiskompetenzen von Schülerinnen und Schülern im internationalen Vergleich. Opladen: Leske + Budrich.Google Scholar
  3. Blömeke, S. (2006). Struktur der Lehrerausbildung im internationalen Vergleich. Ergebnisse einer Untersuchung zu acht Ländern. Zeitschrift für Pädagogik, 52(3), 393–416.Google Scholar
  4. Blömeke, S., Kaiser, G. & Lehmann, R. (Eds.). (2010). TEDS-M 2008—Professionelle Kompetenz und Lerngelegenheiten angehender Mathematiklehrkräfte für die Sekundarstufe I im internationalen Vergleich. Münster: Waxmann Verlag.Google Scholar
  5. Blömeke, S., Suhl, U. & Kaiser, G. (2011a). Teacher education effectiveness: Quality and equity of future primary teachers’ mathematics and mathematics pedagogical content knowledge. Journal of Teacher Education, 62(2), 154–171.CrossRefGoogle Scholar
  6. Blömeke, S., Kaiser, G. & Döhrmann, M. (2011b). Bedingungsfaktoren des fachbezogenen Kompetenzerwerbs von Lehrkräften. Zum Einfluss von Ausbildungs-, Persönlichkeits- und Kompositionsmerkmalen in der Mathematiklehrerausbildung für die Sekundarstufe I. In W. Helsper & R. Tippelt (Eds.), Pädagogische Professionalität. Zeitschrift für Pädagogik. 57 (Special Issue) 77-113. Weinheim: Beltz.Google Scholar
  7. Blömeke, S. (2012). Content, professional preparation and teaching methods: How diverse is teacher education across countries? Comparative Education Review, 56(4), 684–714.CrossRefGoogle Scholar
  8. Blömeke, S. & Kaiser, G. (2012). Homogeneity or heterogeneity? Profiles of opportunities to learn in primary teacher education and their relationship to cultural context and outcomes. ZDM—The International Journal on Mathematics Education, 44(3), 249–264.CrossRefGoogle Scholar
  9. Blömeke, S., Suhl, U., Kaiser, G. & Döhrmann, M. (2012). Family background, entry selectivity and opportunities to learn: What matters in primary teacher education? An international comparison of fifteen countries. Teaching and Teacher Education, 28, 44–55.CrossRefGoogle Scholar
  10. Blömeke, S. & Delaney, S. (2012). Assessment of teacher knowledge across countries: A review of the state of research. ZDM Mathematics Education, 44, 223–247.CrossRefGoogle Scholar
  11. Carnoy, M., Beteille, T., Brodziak, I., Loyalka, P. & Luschei, T. (2009). Teacher Education and Development Study in Mathematics (TEDS-M): Do countries paying teachers higher relative salaries have higher student mathematics achievement? Amsterdam: IEA.Google Scholar
  12. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  13. Ehmke, T. & Jude, N. (2010). Soziale Herkunft und Kompetenzerwerb. In E. Klieme, C. Artelt, J. Hartig, N. Jude, O. Köller, M. Prenzel, W. Schneider & P. Stanat (Eds.), PISA 2009. Bilanz nach einem Jahrzehnt (pp. 154–231). Münster: Waxmann.Google Scholar
  14. Felbrich, A., Kaiser, G. & Schmotz, C. (2012). The cultural dimension of beliefs: An investigation of future primary teachers’ epistemological beliefs concerning the nature of mathematics in 15 countries. ZDM—The International Journal of Mathematics Education, 44(3), 355–366.CrossRefGoogle Scholar
  15. Fwu, B. J. & Wang, H. H. (2002). From uniformity to diversification: Transformation of teacher education in pursuit of teacher quality in Taiwan from 1949 to 2000. International Journal of Educational Development, 22(2), 155–167.CrossRefGoogle Scholar
  16. Gerstenmaier, J. & Mandl, H. (1995). Wissenserwerb unter konstruktivistischer Perspektive. Zeitschrift für Pädagogik, 41(6), 867–888.Google Scholar
  17. Hattie, J. (2009). Visible Learning—A synthesis of over 800 meta-analyses relating to achievement. New York, NY: Routledge.Google Scholar
  18. Helmke, A. & Schrader, F.-W. (2006). Determinanten der Schulleistung. In D. H. Rost (Ed.), Handwörterbuch Pädagogische Psychologie (pp. 83–94). Weinheim: Beltz.Google Scholar
  19. Hsieh, F.-J., Lin. P.-J., Chao, G. & Wang, T.-Y. (2009). Policy and practice of mathematics teacher education in Taiwan. Retrieved 24 January 2012 from http://tedsm.math.ntnu.edu.tw/Teds-m%20Taiwan%20Policy%20Report.pdf.
  20. Hsieh, F.-J., Wang, T.-Y., Hsieh, C.-J., Tang, S.-J. & Chao, G. (2010). A milestone of an international study in Taiwan teacher educationAn international comparison of Taiwan mathematics teacher preparation (Taiwan TEDS-M 2008). Retrieved 24 January 2012 from http://tedsm.math.ntnu.edu.tw/TEDS-M_2008_International_Study_in_Taiwan_Mathematics_Teacher_Education.pdf.
  21. Hsieh, F.-J., Lin, P.-J. & Wang, T.-Y. (2012a). CLE mathematics-related teaching competence of Taiwanese primary future teachers: Evidence from TEDS-M. ZDM Mathematics Education, 44, 277–292.CrossRefGoogle Scholar
  22. Hsieh, F.-J., Lin, P.-J., & Shy, H.-Y. (2012b). Mathematics teacher education in Taiwan. Proceedings of the 36th Annual Meeting of the International Group for the Psychology of Mathematics Education, Taipei, pp. 1–187.Google Scholar
  23. Hofstede, G. (1986). Cultural differences in teaching and learning. International Journal of Intercultural Relations, 10, 301–320.CrossRefGoogle Scholar
  24. Hox, J. (2002). Multilevel analysis. Techniques and applications. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  25. Isserstedt, W., Middendorff, E., Kandulla, M., Borchert, L. & Leszczensky, M. (2010). The economic and social conditions of student life in the Federal Republic of Germany in 2009. 19th Social Survey of the Deutsche Studentenwerk conducted by HIS Hochschul-Informations-System—Selected results. Bonn: Federal Ministry of Education and Research (BMBF) Division for Academic Excellence.Google Scholar
  26. Kaiser, G., Hino, K. & Knipping, C. (2006). Proposal for a framework to analyse mathematics education in Eastern and Western traditions. In K. D. Graf, F. Leung & F. Lopez-Real (Eds.), Mathematics education in different cultural traditions—A comparative study of East Asia and the West. New ICMI Studies Series No. 9 (pp. 319–351). New York, NY: Springer.CrossRefGoogle Scholar
  27. Klieme, E., Artelt, C., Hartig, J., Jude, N., Köller, O., Prenzel, M., Schneider, W. & Stanat, P. (Eds.). (2010). PISA 2009. Bilanz nach einem Jahrzehnt. Münster: Waxmann.Google Scholar
  28. KMK Sekretariat der Ständigen Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland (Eds.) (2003). Fächerspezifische Prognose der Hochschulabsolventen bis 2015. Beschluss der Kultusministerkonferenz vom 04.04.2003. Retrieved 24 January 2012 from http://www.kmk.org/fileadmin/veroeffentlichungen_beschluesse/2003/2003_06_01-Faecherspez-Hochschulabsolventen-2015.pdf.
  29. KMK Sekretariat der Ständigen Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland (Eds.) (2012). Vorausberechnung der Studienanfängerzahlen 20122025Fortschreibung. Retrieved 24 January 2012 from http://www.kmk.org/fileadmin/pdf/Statistik/Vorausberechnung_der_Studienanfaengerzahlen_2012-2025_01.pdf.
  30. Kunter, M., Baumert, J., Blum, W., Klusmann, U., Krauss, S. & Neubrand, M. (Eds.) (2011). Professionelle Kompetenz von Lehrkräften: Ergebnisse des Forschungsprogramms COACTIV. Münster: Waxmann.Google Scholar
  31. Laschke, S., & Blömeke, S. (2013). Teacher education and development study: Learning to teach mathematics (TEDS-M). Dokumentation der Erhebungsinstrumente. Münster: Waxmann.Google Scholar
  32. Lee, W. O. (1996). The cultural context for Chinese learners: Conceptions of learning in the Confucian tradition. In D. A. Watkins & J. B. Biggs (Eds.), The Chinese learner (pp. 45–67). Hong Kong: Comparative Education Research Centre and The Australian Council for Educational Research Ltd.Google Scholar
  33. Leung, F. K. S. (2001). In search of an East Asian identity in mathematics education. Educational Studies in Mathematics., 47, 35–52.CrossRefGoogle Scholar
  34. Leung, F. K. S., Graf, F. & Lopez-Real, F. (Eds.). (2006). Mathematics education in different cultural traditions—A comparative study of East Asia and the West. New ICMI Studies Series No. 9. New York, NY: Springer.Google Scholar
  35. Li, J. (2012). Mathematics teacher preparation examined in an international context: Learning from the Teacher Education and Development Study in Mathematics (TEDS-M) and beyond. ZDM Mathematics Education, 44, 367–370.CrossRefGoogle Scholar
  36. Ma, X. (2010). Gender differences in mathematics achievement: Evidence from regional and international student assessments. In H. Forgasz, J. R. Becker, K.-H. Lee & O.-B. Steinthorsdottir (Eds.), International perspectives on gender and mathematics education (pp. 148–225). Charlotte, NC: Information Age Publisching.Google Scholar
  37. Meyer, H. (2008). Was ist guter Unterricht? Berlin: Cornelsen.Google Scholar
  38. Middendorf, E. (2008). Studieren mit Kind. Ergebnisse der 18. Sozialerhebung des Deutschen Studentenwerks durchgeführt durch HIS Hochschul-Informations-System. Bundesministerium für Bildung und Forschung (Eds.). Bonn/Berlin.Google Scholar
  39. Möller, J. (2008). Lernmotivation. In A. Renkl (Ed.), Lehrbuch Pädagogische Psychologie (pp. 263–298). Bern: Huber.Google Scholar
  40. Mullis, I. V. S., Martin, M. O., Gonzalez, E. J., Gregory, K. D., Garden, R. A., O’Connor, K. M., Chrostowski, S. J. & Smith, T. A. (2000). TIMSS 1999 International Mathematics Report: Findings from IEA’s repeat of the Third International Mathematics and Science Study at the eighth grade. Chestnut Hill, MA: Boston College.Google Scholar
  41. Mullis, I. V. S., Martin, M. O. & Foy, P. (2008). TIMSS 2007 international mathematics report. Findings from IEA’s trends in International Mathematics and Science Study at the fourth and eighth grades. Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Boston College.Google Scholar
  42. National Center for Education Statistics (2009). Trends in International Mathematics and Science Study (TIMSS). Retrieved 24 January 2012 from http://nces.ed.gov/timss/video.asp.
  43. OECD (2008). Education at a glance: OECD indicators. Paris: OECD.Google Scholar
  44. Salili, F. (1995). Explaining Chinese students’ motivation and achievement: A socioculutral analysis. Advances in Motivation and Achievement, 9, 73–118.Google Scholar
  45. Stanat, P., Rauch, D. & Segeritz, M. (2010). Schülerinnen und Schüler mit Migrationshintergrund. In E. Klieme, C. Artelt, J. Hartig, N. Jude, O. Köller, M. Prenzel, W. Schneider & P. Stanat (Eds.), PISA 2009 Bilanz nach einem Jahrzehnt (pp. 200–230). Münster: Waxmann.Google Scholar
  46. Tatto, M. T., Schwille, J., Senk, S., Rodriguez, M., Bankov, K., Reckase, M. D., Ingvarson, L., Peck, R., Rowley, G., Dumais, J., Carstens, R., Brese, F. & Meinck, S. (2009). Teacher Education Study in Mathematics (TEDS-M): Technical summary. East Lansing, MI: Teacher Education International Study Center, College of Education, Michigan State University.Google Scholar
  47. Tatto, M. T., Schwille, J., Senk, S. L., Ingvarson, L., Rowley, G., Peck, R., Bankov, K., Rodriguez, M. & Reckase, M. (2012a). Policy, practice, and readiness to teach primary and secondary mathematics in 17 countries: Findings from the IEA Teacher Education and Development Study in Mathematics (TEDS-M). Amsterdam: IEA.Google Scholar
  48. Tatto, M. T., Schwille, J., Senk, S., Ingvarson, L., Peck, R. & Rowley, G. (2012b). Teacher Education and Development Study in Mathematics (TEDS-M): Technical handbook. Amsterdam: IEA.Google Scholar
  49. Triandis, H. C. (1995). Individualism and collectivism. Boulder, CO: Westview Press.Google Scholar
  50. Vollstedt, M. (2011). Sinnkonstruktion und Mathematiklernen in Deutschland und Hongkong: Eine rekonstruktiv-empirische Studie. Perspektiven der Mathematikdidaktik, 2. Wiesbaden: Vieweg + Teubner.Google Scholar
  51. Wu, M. L., Adams, R. J., Wilson, M. R. & Haldane, S. (2007). ACER ConQuest 2.0: General item response modelling software [Computer program manual]. Camberwell, Australia: Australian Council for Educational Research.Google Scholar
  52. Zhu, Y. & Leung, F. K. S. (2011). Motivation and achievement: Is there an East Asian model? International Journal of Science and Mathematics Education, 9, 1189–1212.CrossRefGoogle Scholar

Copyright information

© National Science Council, Taiwan 2013

Authors and Affiliations

  1. 1.Abt. Systematische DidaktikHumboldt-UniversityBerlinGermany

Personalised recommendations