Advertisement

Quality, Evolution, and Positional Change of University Students’ Argumentation Patterns About Organic Agriculture During an Argument–Critique–Argument Experience

  • Shu-Mey YuEmail author
  • Larry D. Yore
Article

ABSTRACT

The purpose of this study was to investigate the quality, evolution, and position of university students’ argumentation about organic agriculture over a 4-week argument–critique–argument e-learning experience embedded in a first year university biology course. The participants (N  =  43) were classified into three groups based on their epistemological views. Data collected from individual arguments, group deliberations, and individual critiques were coded and analyzed to establish the quality and evolution of argumentation. Results indicated significant improvement in the quality of their justifications between the first and second arguments. Post-hoc comparison of epistemological groups indicated that the more constructivist-oriented students had a greater significant evolution of their justifications than the more empiricist-oriented students, but there was no significant main effect for epistemological orientation. Qualitative analysis of the intervening critiques indicated that some students incorporated or used other students’ arguments or counter-arguments to change their position or to enhance the justification of their original position on organic agriculture, while others appeared to be locked into a confirmation-bias stance and search for evidence that supported their original position and disregarded contradictory evidence.

KEY WORDS

argument–critique–argument e-learning organic agriculture socio-scientific issue 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aydeniz, M., Pabuccu, A., Cetin, P. S. & Kaya, E. (2012). Argumentation and students’ conceptual understanding of properties and behaviors of gases. International Journal of Science and Mathematics Education. doi: 10.1007/s10763-012-9336-1. Advance online publication.
  2. Berland, L. K. & Lee, V. R. (2012). In pursuit of consensus: Disagreement and legitimization during small-group argumentation. International Journal of Science Education. doi: 10.1080/09500693.2011.645086. Advance online publication.
  3. Clark, D. B., Sampson, V., Chang, H.-Y., Zhang, H., Tate, E. D. & Schwendimann, B. (2012). Research on critique and argumentation from the technology enhanced learning in science center. In M. Khine (Ed.), Perspectives on scientific argumentation: Theory, practice and research (pp. 157–199). Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
  4. Creswell, J. W. (2012). Educational research: Planning, conducting, and evaluating quantitative and qualitative research. Boston: Pearson.Google Scholar
  5. Day, S. P. & Bryce, T. G. K. (2012). The benefits of cooperative learning to socio-scientific discussion in secondary school science. International Journal of Science Education. doi: 10.1080/09500693.2011.642324. Advance online publication.
  6. Duschl, R. (2008). Science education in three-part harmony: Balancing conceptual, epistemic, and social learning goals. Review of Research in Education, 32(1), 268–291.CrossRefGoogle Scholar
  7. Erduran, S. & Jiménez-Aleixandre, M. P. (2008). Argumentation in science education: Perspectives from classroom-based research. Dordrecht, The Netherlands: Springer.Google Scholar
  8. Erduran, S., Ozdem, Y. & Park, J.Y. (2012, April). Research on argumentation in science education: A content analysis of key journals. Paper presented at the Annual Meeting of the American Educational Research Association, Vancouver, British Columbia, Canada.Google Scholar
  9. Erduran, S. & Villamanan, R. (2009). Cool argument: Investigating the epistemic levels and argument quality in engineering students’ written arguments about the peltier effect in refrigeration. Paper presented at the Annual Meeting of the National Association for Research in Science Teaching, Garden Grove, CA, USA.Google Scholar
  10. Evagorou, M., Jiménez-Aleixandre, M. P. & Osborne, J. (2012). ‘Should we kill the grey squirrels?’ A study exploring students’ justifications and decision-making. International Journal of Science Education, 34(3), 401–428.CrossRefGoogle Scholar
  11. Ford, M. (2008). Disciplinary authority and accountability in scientific practice and learning. Science Education, 92(3), 404–423.CrossRefGoogle Scholar
  12. Ford, C. L. & Yore, L. D. (2012). Toward convergence of metacognition, reflection, and critical thinking: Illustrations from natural and social sciences teacher education and classroom practice. In A. Zohar & J. Dori (Eds.), Metacognition in science education: Trends in current research (pp. 251-271). Dordrecht, The Netherlands: Springer.Google Scholar
  13. Gilabert, S., Garcia-Mila, M. & Felton, M. K. (2012). The effect of task instructions on students’ use of repetition in argumentative discourse. International Journal of Science Education. doi: 10.1080/09500693.2012.663191. Advance online publication.
  14. Horng, R. Y., Lu, P. H., Chen, P. H. & Hou, S. H. (2012). The effects of argument stance on scientific knowledge inquiry skills. International Journal of Science Education. doi: 10.1080/09500693.2012.671558. Advance online publication.
  15. Jiménez-Aleixandre, M. P. & Pereiro-Munoz, C. (2005). Argument construction and change while working on a real environment problem. In K. Boersma, M. Goedhart, O. de Jong & H. Eijkelhof (Eds.), Research and the quality of science education. Dordrecht, The Netherlands: Springer.Google Scholar
  16. Johnson, D. W. & Johnson, R. T. (2009). Energizing learning: The instructional power of conflict. Educational Researcher, 38(1), 37–51.CrossRefGoogle Scholar
  17. Kelly, G. J., Chen, C. & Prothero, W. (2000). The epistemological framing of a discipline: Writing science in university oceanography. Journal of Research in Science Teaching, 37(7), 691–718.CrossRefGoogle Scholar
  18. Kelly, G. J. & Takao, A. (2002). Epistemic levels in argument: An analysis of university oceanography students’ use of evidence in writing. Science Education, 86(3), 314–342.CrossRefGoogle Scholar
  19. Khine, M. (2012). Perspectives on scientific argumentation: Theory, practice and research. Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
  20. Kuhn, D. (2010). Teaching and learning science as argument. Science Education, 94(5), 810–824.CrossRefGoogle Scholar
  21. Kuhn, D. & Crowell, A. (2011). Dialogic argumentation as a vehicle for developing young adolescents’ thinking. Psychological Science, 22(4), 545–552.CrossRefGoogle Scholar
  22. Lee, M.-H., Wu, Y.-T. & Tsai, C.-C. (2009). Research trends in science education from 2003 to 2007: A content analysis of publications in selected journals. International Journal of Science Education, 31(15), 1999–2020.CrossRefGoogle Scholar
  23. Lin, H.-S., Hong, Z.-R. & Lawrenz, F. (2012). Promoting and scaffolding argumentation through reflective asynchronous discussions. Computers & Education, 59, 378–384.CrossRefGoogle Scholar
  24. Liu, S.-Y., Lin, C.-S. & Tsai, C.-C. (2011). College students’ scientific epistemological views and thinking patterns in socioscientific decision making. Science Education, 95(3), 497–517.CrossRefGoogle Scholar
  25. Liu, S.-Y. & Tsai, C.-C. (2008). Differences in the scientific epistemological views of undergraduate students. International Journal of Science Education, 30(8), 1055–1073.CrossRefGoogle Scholar
  26. McDonald, C. V. & McRobbie, C. J. (2012). Utilising argumentation to teach nature of science. In B. J. Fraser, K. G. Tobin & C. McRobbie (Eds.), International Handbook of Science Education (pp. 969–986). New York, NY: Springer.CrossRefGoogle Scholar
  27. Mercier, H. & Sperber, D. (2011). Why do humans reason? Arguments for an argumentative theory. Behavioral and Brain Sciences, 34(2), 57–74.CrossRefGoogle Scholar
  28. Nam, J., Choi, A. & Hand, B. (2011). Implementation of the science writing heuristic (SWH) approach in 8th grade science classrooms. International Journal of Science and Mathematics Education, 9(5), 1111–1133.CrossRefGoogle Scholar
  29. National Research Council (2012). In H. Quinn, H. A. Schweingruber & T. Keller (Eds.), A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.Google Scholar
  30. Nussbaum, E. M. (2011). Argumentation, dialogue theory, and probability modelling: Alternative frameworks for argumentation research in education. Educational Psychologist, 46(2), 84–106.CrossRefGoogle Scholar
  31. Nussbaum, E. M., Sinatra, G. & Poliquin, A. (2008). Role of epistemic beliefs and scientific argumentation in science learning. International Journal of Science Education, 30(15), 1977–1999.CrossRefGoogle Scholar
  32. Osborne, J. (2012). The role of argument: Learning how to learn in school science. In B. J. Fraser, K. G. Tobin & C. McRobbie (Eds.), International Handbook of Science Education (pp. 933–949). New York. NY: Springer.CrossRefGoogle Scholar
  33. Osborne, J., Erduran, S. & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994–1020.CrossRefGoogle Scholar
  34. Osborne, J., Henderson, B., MacPherson, A. & Szu, E. (2012, April). Assessing scientific argumentation by middle school pupils and testing a learning progression for argumentation. Paper presented at the Annual Meeting of the American Educational Research Association, Vancouver, British Columbia, Canada.Google Scholar
  35. Osborne, J., MacPherson, A., Patterson, A. & Szu, E. (2012b). Introduction. In M. Khine (Ed.), Perspectives on scientific argumentation: Theory, practice and research (pp. 3–15). Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
  36. Osborne, J. & Patterson, A. (2011). Scientific argument and explanation: A necessary distinction? Science Education, 95(4), 627–638.CrossRefGoogle Scholar
  37. Sadler, T. D. (2004). Informal reasoning regarding socioscientific issues: A critical review of research. Journal of Research in Science Teaching, 41(5), 513–536.CrossRefGoogle Scholar
  38. Sadler, T. D. (2009). Situated learning in science education: Socioscientific issues as contexts for practice. Studies in Science Education, 45(1), 1–42.CrossRefGoogle Scholar
  39. Sadler, T. D. (2011). Socio-scientific issues in the classroom. London, England: Springer.CrossRefGoogle Scholar
  40. Sadler, T. D. & Dawson, V. (2012). Socioscientific issues in science education: Contexts for promoting key learning outcomes. In B. J. Fraser, K. G. Tobin & C. McRobbie (Eds.), International Handbook of Science Education (pp. 799–809). New York, NY: Springer.CrossRefGoogle Scholar
  41. Sadler, T. D. & Fowler, S. R. (2006). A threshold model of content knowledge transfer for socioscientific argumentation. Science Education, 90(6), 986–1004.CrossRefGoogle Scholar
  42. Sadler, T. D. & Zeidler, D. L. (2009). Scientific literacy, PISA, and socioscientific discourse: Assessment for progressive aims of science education. Journal of Research in Science Teaching, 46(8), 909–921.CrossRefGoogle Scholar
  43. Sampson, V. & Clark, D. B. (2009). The impact of collaboration on the outcomes of scientific argumentation. Science Education, 93(3), 448–484.CrossRefGoogle Scholar
  44. Tal, T., Kali, Y., Magid, S. & Madhok, J. J. (2011). Enhancing the authenticity of a web-based module for teaching simple inheritance. In T. D. Sadler (Ed.), Socio-scientific issues in the classroom (pp. 11–38). London, NY: Springer.CrossRefGoogle Scholar
  45. Teed, S. M., Zandvliet, D. V. & Ormond, C. G. A. (2011). Enhancing science education through an online repository of controversial, socioscientific news stories. In L. D. Yore, E. Van der Flier-Keller, D. W. Blades, T. W. Pelton & D. B. Zandvliet (Eds.), Pacific CRYSTAL centre for science, mathematics, and technology literacy: Lessons learned (pp. 149–163). Rotterdam, The Netherlands: Sense.Google Scholar
  46. Toulmin, S. (1958). The uses of argument. Cambridge, England: Cambridge University Press.Google Scholar
  47. Tsai, C.-C. & Liu, S.-Y. (2005). Developing a multi-dimensional instrument for assessing students’ epistemological views toward science. International Journal of Science Education, 27(13), 1621–1638.CrossRefGoogle Scholar
  48. Wu, Y.-T. & Tsai, C.-C. (2012). The effects of university students’ argumentation on socio-scientific issues via on-line discussion in their informal reasoning regarding this issue. In M. Khine (Ed.), Perspectives on scientific argumentation: Theory, practice and research (pp. 221–234). Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
  49. Yore, L. D. (2012). Science Literacy For All - More than a slogan, logo, or rally flag! In K. C. D. Tan, M. Kim, & S. Hwang (Eds.), Issues and challenges in science education research: Moving forward (pp. 5-23). Dordrecht, The Netherlands: Springer.Google Scholar
  50. Yore, L. D., Bisanz, G. L. & Hand, B. M. (2003). Examining the literacy component of science literacy: 25 years of language arts and science research. International Journal of Science Education, 25(6), 689-725.Google Scholar
  51. Zeidler, D. L., Applebaum, S. & Sadler, T. D. (2011). Enacting a socioscientific issues classroom: Transformative transformations. In T. D. Sadler (Ed.), Socio-scientific issues in the classroom (pp. 277–305). London, NY: Springer.CrossRefGoogle Scholar
  52. Zeidler, D. L. & Sadler, T. D. (2008). The role of moral reasoning in argumentation: Conscience, character, and care. In S. Erduran & M.-P. Jiménez-Aleixandre (Eds.), Argumentation in science education: Recent developments and future directions (pp. 201–216). New York, NY: Springer.Google Scholar
  53. Zeidler, D. L., Sadler, T. D., Applebaum, S. M. & Callahan, B. E. (2009). Advancing reflective judgment through socioscientific issues. Journal of Research in Science Teaching, 46(1), 74–101.CrossRefGoogle Scholar

Copyright information

© National Science Council, Taiwan 2012

Authors and Affiliations

  1. 1.Graduate Institute and Department of Science Application and DisseminationNational Taichung University of EducationTaichungRepublic of China
  2. 2.Department of Curriculum and InstructionUniversity of VictoriaVictoriaCanada
  3. 3.Department of Science Application and DisseminationNational Taichung University of EducationTaichungRepublic of China

Personalised recommendations