Advertisement

DEVELOPING A TEST FOR ASSESSING ELEMENTARY STUDENTS’ COMPREHENSION OF SCIENCE TEXTS

  • Jing-Ru WangEmail author
  • Shin-Feng Chen
  • Reuy-Fen Tsay
  • Ching-Ting Chou
  • Sheau-Wen Lin
  • Huey-Lien Kao
Article

Abstract

This study reports on the process of developing a test to assess students’ reading comprehension of scientific materials and on the statistical results of the verification study. A combination of classic test theory and item response theory approaches was used to analyze the assessment data from a verification study. Data analysis indicates the test has satisfactory validity and reliability. The Reading Comprehension of Science Test (RCST) components have a wide range of difficulty, which suggests that the RCST is appropriate for a relatively large percentage of students. Based on the accepted relationships among science, language, and literacy, integrated literacy–science instructions are highly recommended.

Key words

assessment reading comprehension science texts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bond, L. A. (1996). Norm- and criteria-referenced testing. ERIC®/AE Digest Series EDO-TM-96-09. Available from http://pareonline.net/getvn.asp?v=5&n=2
  2. DeAyala, R. J. (2008). The theory and practice of item response theory. New York: Guilford.Google Scholar
  3. Fang, Z. (2005). Scientific literacy: A systemic functional linguistics perspective. Science Education, 89(2), 335–347.CrossRefGoogle Scholar
  4. Glynn, S. M. & Muth, K. D. (1994). Reading and writing to learn science: Achieving scientific literacy. Journal of Research in Science Teaching, 31(9), 1057–1073.CrossRefGoogle Scholar
  5. Goldman, S. R. & Bisanz, G. L. (2002). Toward a functional analysis of scientific genres: Implications for understanding and learning processes. In J. Otero, J. A. León & A. C. Graesser (Eds.), The psychology of science text comprehension (pp. 19–50). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  6. Guthrie, J. T. & Taboada, A. (2004). Fostering the cognitive strategies of reading comprehension. In J. T. Guthrie, A. Wigfield & K. C. Perencevich (Eds.), Motivating reading comprehension (pp. 87–112). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  7. Halliday, M. A. K. & Martin, J. R. (1993). Writing science: Literacy and discursive power. London: Falmer.Google Scholar
  8. Hambleton, R. K., Swaminathan, H. & Rogers, H. J. (1991). Fundamentals of item response theory. London: Sage.Google Scholar
  9. Lien, A. J. (1971). Measurement and evaluation of learning (2nd ed.). Dubuque, IA: William C. Brown.Google Scholar
  10. Liu, C.-Y., Hung, Y.-T., Chuang, Y.-L., Chen, Y.-J., Weng, W.-S., Liu, J.-S. & Liang, K.-Y. (2006). Incorporating development stratification of Taiwan townships into sampling design of large scale health interview survey. Journal of Health Management, 4(1), 1–22.Google Scholar
  11. Lumsden, J. (1961). The construction of unidimensional tests. Psychological Bulletin, 58(2), 122–131.CrossRefGoogle Scholar
  12. Mayer, R. E. (1992). Guiding students’ cognitive processing of scientific information in text. In M. Pressley, K. R. Harris & J. T. Guthrie (Eds.), Promoting academic competence and literacy in school (pp. 242–258). New York: Academic Press.Google Scholar
  13. Moje, E. B. (2008). Foregrounding the disciplines in secondary literacy teaching and learning: A call for change. Journal of Adolescent & Adult Literacy, 52(2), 96–107.CrossRefGoogle Scholar
  14. Nitko, A. J. & Brookhart, S. M. (2011). Educational assessment of students (6th ed.). Boston: Allyn & Bacon.Google Scholar
  15. Norris, S. P. & Phillips, L. M. (2003). How literacy in its fundamental sense is central to scientific literacy. Science Education, 87(2), 224–240.CrossRefGoogle Scholar
  16. Norris, S. P. & Phillips, L. M. (2005, February). Reading as inquiry. Paper presented at the Inquiry Conference on Developing a Consensus Research Agenda, Rutgers University, New Brunswick, NJ.Google Scholar
  17. Nunnally, J. C. & Bernstein, I. H. (1994). Psychometric theory. New York: McGraw-Hill.Google Scholar
  18. Osterlind, S. J. (2006). Modern measurement: Theory, principles, and applications of mental appraisal. Upper Saddle River, NJ: Pearson/Merrill Prentice Hall.Google Scholar
  19. Pearson, P. D., Moje, E. B. & Greenleaf, C. (2010). Literacy and science: Each in the service of the other. Science, 328(5977), 459–463.CrossRefGoogle Scholar
  20. Perfetti, C. A., Landi, N. & Oakhill, J. (2005). The acquisition of reading comprehension skill. In M. J. Snowling & C. Hulme (Eds.), The science of reading: A handbook (pp. 228–247). Malden, MA: Blackwell.Google Scholar
  21. Quellmalz, E. & Hoskyn, J. (1997). Classroom assessment of reasoning strategies. In G. D. Phye (Ed.), Handbook of classroom assessment: Learning, adjustment, and achievement (pp. 103–130). San Diego, CA: Academic Press.Google Scholar
  22. Rouet, J.-F. & Vidal-Abarca, E. (2002). Mining for meaning: Cognitive effects of inserted questions in learning from scientific text. In J. Otero, J. A. León & A. C. Graesser (Eds.), The psychology of science text comprehension (pp. 417–436). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  23. Shepardson, D. P. & Gummer, E. S. (2001). A framework for thinking about and planning classroom assessments in science. In D. P. Shepardson (Ed.), Assessment in science: A guide to professional development and classroom practice (pp. 83–98). Dordrecht, the Netherlands: Kluwer.Google Scholar
  24. Snow, C. E. (2010). Academic language and the challenge of reading for learning about science. Science, 328(5977), 450–452.CrossRefGoogle Scholar
  25. Sutton, C. (1992). Words, science and learning. Buckingham, UK: Open University Press.Google Scholar
  26. Vitale, M. R. & Romance, N. R. (2009). A research-based model for integrating elementary science and reading comprehension: Implications for research and practice. Paper presented at the Annual Meeting of the American Educational Research Association, San Diego, CAGoogle Scholar
  27. Vygotsky, L. S. (1962). Thought and language. New York: Wiley.CrossRefGoogle Scholar
  28. Wang, J.-R. & Lin, S.-W. (2009). Evaluating elementary and secondary school science learning environments in Taiwan. International Journal of Science Education, 31(7), 853–872.CrossRefGoogle Scholar
  29. Wellington, J. & Osborne, J. (2001). Language and literacy in science education. Philadelphia: Open University Press.Google Scholar
  30. Wiggins, G. & McTighe, J. (2005). Understanding by design (2nd ed.). Alexandria, VA: ASCD.Google Scholar
  31. Yore, L. D. (2009, November). Science literacy for all: More than a logo or rally flag! [Keynote address]. Proceedings of the International Science Education Conference 2009. Singapore (pp. 2393–2427).Google Scholar
  32. Yore, L. D., Bisanz, G. L. & Hand, B. M. (2003). Examining the literacy component of science literacy: 25 years of language arts and science research. International Journal of Science Education, 25(6), 689–725.CrossRefGoogle Scholar
  33. Yore, L. D., Craig, M. T. & Maguire, T. O. (1998). Index of science reading awareness: An interactive-constructive model, test verification, and grades 4–8 results. Journal of Research in Science Teaching, 35(1), 27–51.CrossRefGoogle Scholar

Copyright information

© National Science Council, Taiwan 2011

Authors and Affiliations

  • Jing-Ru Wang
    • 1
    Email author
  • Shin-Feng Chen
    • 1
  • Reuy-Fen Tsay
    • 1
  • Ching-Ting Chou
    • 1
  • Sheau-Wen Lin
    • 1
  • Huey-Lien Kao
    • 1
  1. 1.National Pingtung University of EducationPingtungRepublic of China

Personalised recommendations