• Susanne EngströmEmail author
  • Peter Gustafsson
  • Hans Niedderer


Understanding energy with a focus on sustainable development requires further knowledge beyond traditional conceptual understanding. This paper presents the result from one main investigation and two smaller follow-up studies. The main study (step 1) consists of an interpreting, iterative analysis of statements made by experts on contents for physics education on energy with focus on sustainable energy systems gathered from a questionnaire, which results in subject-specific contents for physics teaching presented as a category system of objectives. The categories from step 1 are used as means for analyses in steps 2 and 3, which involve the study of educational material and one physics class. The results show that the content of physics for upper secondary, in order for students to reach insight, should comprise certain physical concepts and relations not only in ‘limited contexts’ but also in relation to greater contextual connections, in which problematisation and insight in solutions for the future is necessary. These parts should have a similar weight according to the statements of the experts. This is not to be found in either the typical educational material (textbooks) or in one physics class, which has been studied.

Key words

energy education physics education sustainable development in physics sustainable energy education 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aikenhead, G. S. (2007). Humanistic perspectives in the science curriculum. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 881–910). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  2. Andersson, B. (1994). Om kunskapande genom integration. NA-SPEKTRUM. Studier av naturvetenskapen i skolan Nr 10 [About making knowledge through integration]. Göteborg, Sweden: Göteborgs universitet. (in Swedish). Scholar
  3. Andersson, B. (2001). Elevers tänkande och skolans naturvetenskap—forskningsresultat som ger nya idéer [Pupils’ thinking and the school science’s—research that provides new ideas.]. Stockholm, Sweden: Skolverket (in Swedish).Google Scholar
  4. Andersson, B. & Wallin, A. (2000). Students’ understanding of the greenhouse effect. Journal of Research in Science Teaching, 37(10), 1096–1111.CrossRefGoogle Scholar
  5. Andersson, B., Bach, F. & Zetterqvist, A. (2002). Understanding global and personal use of energy. Journal of Baltic Science Education, 1(2), 4–18.Google Scholar
  6. Areskoug, M. (2006). Miljöfysik—Energi för hållbar utveckling [Environmental physics—energy for sustainable development]. Lund, Sweden: Studentlitteratur (in Swedish).Google Scholar
  7. Areskoug, M. & Eliasson, P. (2007). Energi för hållbar utveckling—ett historiskt och naturvetenskapligt perspektiv [Energy for sustainable development—a historical and scientific perspective]. Lund, Sweden: Studentlitteratur (in Swedish).Google Scholar
  8. Bennett, J., Hogarth, S. & Lubben, F. (2003). A systematic review of the effects of context-based and science–technology–society (STS) approaches in the teaching of secondary science. Version 1.1. In Research evidence in education library. London: EPPI-Centre, Social Science Research Unit, Institute of Education.Google Scholar
  9. Björneloo, I. (2004). Från raka svar till komplexa frågor. En studie om premisser för lärande för hållbar utveckling. IPD-rapport 2004:09 [From straight answers to complex questions. A study of premises for learning for sustainable development]. Göteborg, Sweden: Institutionen för pedagogik och didaktik, University of Gothenburg (in Swedish). Abstract retrieved June 2009 at
  10. Björneloo, I. (2007). Innebörder av hållbar utveckling. En studie av lärares utsagor om undervisning [Meanings of Sustainable Development. A study of teachers’ statements on their education]. Doctoral dissertation, University of Gothenburg (in Swedish). Retrieved June 2009 at
  11. Blumenfeld, P. C., et al (1996). Learning with peers: From small group cooperation to collaborative communities. Educational Researcher, 25(8), 37–40.Google Scholar
  12. Bruntland, G. (Ed.). (1987). Our common future: The world commission on environment and development. Oxford: Oxford University Press.Google Scholar
  13. Cohen, J. (1960). A coefficient for agreement for nominal scales. Educational and Psychological Measurement, 20, 37–46.CrossRefGoogle Scholar
  14. Cohen, J. (1968). Weighted kappa: Nominal scale agreement with provision for scale disagreement or partial credit. Psychological Bulletin, 70, 213–220.CrossRefGoogle Scholar
  15. Connecticut Energy Education (2008). The Institute for Sustainable Energy. Retrieved July 2009 at
  16. Crocker, L. & Algina, J. (1986). Introduction to classical and modern test theory. Orlando, FL: Harcourt Brace Jovanovich.Google Scholar
  17. Denscombe, M. (2000). Forskningshandboken—för småskaliga forskningsprojekt inom samhällsvetenskaperna [The handbook of research—for small-scale research projects in social sciences]. Lund, Sweden: Studentlitteratur (in Swedish).Google Scholar
  18. DHO (2004). Summary Physics and sustainable development. Retrieved May 2009 at
  19. DHO (2009). The Dutch national network for sustainable development in higher education curricula. Retrieved May 2009 at
  20. Driver, R., Guesne, E. & Tiberghien, A. (1985). Children’s ideas in science. Buckingham, UK: Open University Press.Google Scholar
  21. Driver, R., Leach, J., Millar, R. & Scott, P. (1996). Young people’s images of science. Buckingham, UK: Open University Press.Google Scholar
  22. Ds (2001:48). Samverkande styrning—OM läroplanerna som styrdokument [Collaborative governance—curricular policy documents (from the Swedish Parliament)]. Stockholm, Sweden: Sveriges Riksdag (in Swedish)Google Scholar
  23. Enghag, M. & Niedderer, H. (2008). Two dimensions of student ownership of learning during small-group work in physics. International Journal of Science and Mathematics Education, 6(4), 629–653.CrossRefGoogle Scholar
  24. Engström, S. (2008a). Fysiken spelar roll! Undervisning om hållbara energisystem, fokus på gymnasiekursen fysik A [The physics matter! Teaching about sustainable energy systems in upper secondary school, in Physics course A]. Licentiate thesis, Mälardalen University Press, Eskilstuna (in Swedish).Google Scholar
  25. Engström, S. (2008b). Content objectives for teaching sustainable energy in physics education. In Proceedings of the XIII. IOSTE Symposium. ISBN 978-605-5829-16-2. (pp. 271–278). Ankara, Turkey: Palme.Google Scholar
  26. Gayford, C. G. (1991). Environmental education: A question of emphasis in the school curriculum. Cambridge Journal of Education, 21, 73–79.CrossRefGoogle Scholar
  27. Government Communication (2005/06:126). Strategic challenges—a further elaboration of the Swedish strategy for sustainable development. Retrieved June 2009 at
  28. Gyberg, P. (2003). Energi som kunskapsområde—om praktik och diskurser i skolan [Energy field of knowledge—the practice and discourses of school]. Linköping, Sweden: Tema Teknik och social förändring Linköpings universitet (in Swedish).Google Scholar
  29. Hansson, B. (2000). Förutsättningar för gymnasieelevers kunskapsbildning och för undervisning inom miljöområdet [Prerequisites for upper secondary school student’s knowledge building and teaching in the environmental field]. Doctoral dissertation, University of Lund (in Swedish).Google Scholar
  30. Hayes, J. R. & Hatch, J. A. (1999). Issues in measuring reliability: Correlation versus percentage of agreement. Written Communication, 16(3), 354–367.CrossRefGoogle Scholar
  31. Heller, P., Keith, R. & Anderson, S. (1992). Teaching problem solving through cooperative grouping. Part 1: Group versus individual problem solving. American Journal of Physics, 60(7), 627–636.CrossRefGoogle Scholar
  32. Hobson, A. (2007). Resource letter PSEn-1: Physics and society: Energy. American Journal of Physics, 75(4), 294–308.CrossRefGoogle Scholar
  33. Kesidou, S. & Duit, R. (1993). Student’s conceptions of the second law of thermodynamics—an interpretive study. Journal of Research in Science Teaching, 30(1), 85–106.CrossRefGoogle Scholar
  34. Marton, F. & Mun Ling, L. (2007). Learning from “The learning Study”. Tidskrift för lärarutbildning och forskning [Journal of Research in Teacher Education], 1, 31–46.Google Scholar
  35. Millar, R. & Osborne, J.F. (Eds.). (1998). Beyond 2000: Science education for the future. London: King’s Collage London.Google Scholar
  36. Murry, J. W., Jr. & Hammons, J. O. (1995). Delphi: A versatile methodology for conducting qualitative research. The Review of Higher Education, 18(4), 423–436.Google Scholar
  37. Niedderer, H. (2001). Analyse von Lehr-Lern-Prozessen beim elektrischen Stromkreis aus Videodaten. In S. v. Aufschneiter & M. Welzel (Hrsg.), Nutzung von Videodaten zur Untersuchung von Lehr -Lern -Prozessen—Aktuelle Methoden empirischer pädagogischer Forschung. Münster, Germany: Waxmann.Google Scholar
  38. NU 03 (2003). Skolverkets nationella utvärdering av grundskolan [The Swedish National Agency of Education: National evaluation of lower secondary school]. Retrieved May 2008 at (in Swedish).
  39. Öhman, J. (2003). Didaktiska reflektioner kring undervisning för hållbar utveckling. In Utbildning för hållbar utveckling [Education for sustainable development]. Report from the Nordic Council of Minister’ seminar held in Karlskrona on 12–13 June 2003.Google Scholar
  40. Osborne, J., Collins, S., Ratcliffe, M., Millar, R. & Dusch, R. (2003). What “ideas-about-science” should be taught in school science? A Delphi study of the expert community. Journal of Research in Science Teaching, 40(7), 692–720.CrossRefGoogle Scholar
  41. Roberts, D. A. (2007). Scientific literacy/science literacy. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 729–780). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  42. Robson, C. (2002). Real world research. London: Blackwell.Google Scholar
  43. SEET (2008). The Institute for Sustainable Energy SEET—sustainable energy instructional materials. Retrieved June 2008 at
  44. Sellgren, G. (Ed.). (2007). Lärande på hållbar väg [Learning in a sustainable way]. Solna, Sweden: Världsnaturfonden WWF (in Swedish).Google Scholar
  45. SFS (1985:1100). The Education Act. Stockholm, Sweden: Education Department/Authority, Ministry of Education and Science in Sweden.Google Scholar
  46. SKOLFS (2000:49). Curriculum in Physics A. Retrieved 18 November 2009 at
  47. Solomon, J. (1992). Getting to know about energy in school and society. London: Taylor & Francis Group.Google Scholar
  48. SOU (2004:104). Statens Offentliga Utredningar [Swedish Official Report]. Att lära för hållbar utveckling. Betänkande av kommittén för utbildning för hållbar utveckling [Committee on education for sustainable development]. Summary in English. Stockholm, Sweden: FRITZES Offentliga Publikationer. Retrieved June 2009 at
  49. Space, W. (2007). Climate physics. Using basic physics concepts to teach about climate change. Science Teacher, 74(6), 44–48.Google Scholar
  50. Stemler, S. E. (2004). A comparison of consensus, consistency, and measurement approaches to estimating interrater reliability. Practical Assessment, Research & Evaluation, 9(4). Retrieved November 20, 2009 from
  51. Swedish Energy Agency (2009). Retrieved 13 November 2009 at
  52. Swedish Environmental Protection Agency (2006). Retrieved August 2006 at
  53. Swedish National Agency for Education (2002). Hållbar utveckling i skolan [Sustainable development in school]. Stockholm, Sweden: Liber (in Swedish).Google Scholar
  54. UN (2003). Economic Commission for Europe, Statement on Education for Sustainable Development by the UNECE Ministers of the Environment, United Nations Economic Commission for Europe, Kiev, 21–23 May 2003.Google Scholar
  55. UNECE (2005). Unites Nations Economic Commission for Europe. Strategy for education for sustainable development. CEP/AC.13/2005/3/Rev.1. Retrieved June 2009 at
  56. WCPSD (2005). World Conference on Physics and Sustainable Development. Retrieved May 2009 at
  57. Wiser, M. & Amin, T. (2001). Is heat hot? Inducing conceptual change by integrating everyday and scientific perspectives on thermal phenomena. Learning and Instruction, 11, 331–355.CrossRefGoogle Scholar
  58. Young, M. (1993). Instructional design for situated learning. Educational Technology Research and Development, 41, 43–58.CrossRefGoogle Scholar
  59. Yuenyong, C., Jones, A. & Yutakom, N. (2008). A comparison of Thailand and New Zealand students’ ideas about energy related to technological and societal issues. International Journal of Science and Mathematics Education, 6, 293–311.CrossRefGoogle Scholar

Copyright information

© National Science Council, Taiwan 2010

Authors and Affiliations

  • Susanne Engström
    • 1
    Email author
  • Peter Gustafsson
    • 1
  • Hans Niedderer
    • 1
  1. 1.School of Education, Culture and CommunicationMälardalen UniversityVästeråsSweden

Personalised recommendations