Advertisement

CHARACTERIZING THEMATIZED DERIVATIVE SCHEMA BY THE UNDERLYING EMERGENT STRUCTURES

  • Mercedes GarcíaEmail author
  • Salvador Llinares
  • Gloria Sánchez-Matamoros
Article

ABSTRACT

This paper reports on different underlying structures of the derivative schema of three undergraduate students that were considered to be at the trans level of development of the derivative schema (action–process–object–schema). The derivative schema is characterized in terms of the students’ ability to explicitly transfer the relationship between a function and its first derivative to the derivative function and the second derivative. This conscious shift of properties of derivatives is differently manifested by the students in the trans level of development of the derivative schema and can be considered evidence of the different characteristics of the thematization of derivative schema. From here we suggest that there are different underlying structures in the constructed schema due to the consciousness in which students use the relations between a function and its derivative.

KEY WORDS

consciousness derivative schema reflective abstraction thematization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apostol, T. M. (1982). Análisis Matemático. Reverté, S.A.Google Scholar
  2. Asiala, M., Cottrill, J., Dubinsky, E., & Schwingendorf, K. (1997). The development of students’ graphical understanding of the derivative. Journal of Mathematical Behavior, 16(4), 399–431.CrossRefGoogle Scholar
  3. Baker, B., Cooley, L., & Trigueros, M. (2000). A calculus graphing schema. The Journal for Research in Mathematics Education, 31(5), 557–578.CrossRefGoogle Scholar
  4. Berry, J. S., & Nyman, M. A. (2003). Promoting students’ graphical understanding of the calculus. Journal of Mathematical Behavior, 22, 481–497.CrossRefGoogle Scholar
  5. Campbell, R. L. (2001). Reflecting abstraction in context. Editor’s introduction to J. Piaget, Studies in reflecting abstraction [R. L. Campbell, Ed., Trans] (pp. 1–27). Sussex, UK: Taylor & Francis.Google Scholar
  6. Clark, J. M., Cordero, F., Cottrill, J., Czarnocha, B., DeVries, D. J., St. John, D., Tolias, G., et al. (1997). Constructing a schema: The case of the chain rule. Journal of Mathematical Behavior, 14(4), 345–364.CrossRefGoogle Scholar
  7. Clement, J. (2000). Analysis of clinical interviews: Foundations and model viability. In A. E. Kelly & R. A. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 547–590). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  8. Confrey, J., & Costa, Sh. (1996). A critique of the selection of “mathematical objects” as a central metaphor for advanced mathematical thinking. International Journal of Computer for Mathematical Learning, 1, 139–168.CrossRefGoogle Scholar
  9. Cooley, L., Trigueros, M., & Baker, B. (2003). Thematization of the calculus graphing schema. In N. Pateman, B. Dougherty, & J. Zilliox (Eds.), Proceedings of the 27th annual meeting of the International Group for the Psychology of Mathematics Education, 2 (pp. 57–64). Honolulu, HI: University of Hawaii.Google Scholar
  10. Cooley, L., Trigueros, M., & Baker, B. (2007). Scheme thematization: A framework and an example. Journal for Research in Mathematics Education, 38(4), 370–392.Google Scholar
  11. Cottrill, J., Dubinsky, E., Nichols, D., Schwingendorf, K., Thomas, K., & Vidakovic, D. (1996). Understanding the limit concept: Beginning with a coordinated process scheme. The Journal for Mathematical Behavior, 15, 167–192.CrossRefGoogle Scholar
  12. Davis, G. E., & Tall, D. O. (2002). What is a scheme? In D. Tall & M. Thomas (Eds.), Intelligence, learning and understanding. A tribute to Richard Skemp (pp. 131–150). Flaxton, Queensland, Australia: Post Pressed.Google Scholar
  13. Dörfler, W. (2002). Formation of mathematical objects as decision making. Mathematical Thinking and Learning, 4(4), 337–350.CrossRefGoogle Scholar
  14. Dubinsky, E. (1991a). Reflective abstraction in advanced mathematical thinking. In D. Tall (Ed.), Advanced mathematical thinking (pp. 95–126). Dordrecht, The Netherlands: Kluwer.Google Scholar
  15. Dubinsky, E. (1991b). Constructive aspects of reflective abstraction in advanced mathematics. In L. P. Steffe (Ed.), Epistemological foundations of mathematical experiences (pp. 160–202). New York: Springer.Google Scholar
  16. Dubinsky, E. (1996). Aplicación de la perspectiva piagetiana a la educación matemática universitaria. Educación Matemática, 8(3), 24–41.Google Scholar
  17. Dubinsky, E., Weller, K., McDonald, M. A., & Brown, A. (2005). Some historical issues and paradoxes regarding the concept of infinity: An APOS analysis: Part 1/2. Educational Studies in Mathematics, 58(60), 335–359. 253–266.CrossRefGoogle Scholar
  18. Edwards, B., Dubinsky, E., & McDonald, M. A. (2005). Advanced mathematical thinking. Mathematical Thinking and Learning, 7(1), 15–25.CrossRefGoogle Scholar
  19. Goldin, G. (2000). A scientific perspective on structured, task-based interviews in mathematics education research. In A. E. Kelly & R. A. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 517–546). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  20. Habre, S., & Abboud, M. (2006). Students’ conceptual understanding of a function and its derivate in an experimental calculus course. Journal of Mathematical Behavior, 25, 57–72.CrossRefGoogle Scholar
  21. Hähkiöniemi, M. (2006). Associative and reflective connections between the limit of the difference quotient and limiting process. Journal of Mathematical Behavior, 25, 170–184.CrossRefGoogle Scholar
  22. Harel, G., Selden, A., & Selden, J. (2006). Advanced mathematical thinking. In A. Gutierrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education (pp. 147–172). Rotterdam, The Netherlands: Sense.Google Scholar
  23. Harel, G., & Sowder, L. (2005). Advanced mathematical-thinking at any age: Its nature and its development. Mathematical Thinking and Learning, 7, 27–50.CrossRefGoogle Scholar
  24. Mason, J., & Jonston-Wilder, S. (2004). Fundamental constructs in mathematics education. London: Routhledge Falmer–The Open University.Google Scholar
  25. Meel, D. E. (2003). Modelos y teorías de la comprensión matemática: Comparación de los modelos de Pirie y Kieren sobre la evolución de la comprensión matemática y la teoría APOE. Revista Latinoamericana de Investigación en Matemática Educativa, 6(3), 221–271.Google Scholar
  26. Piaget, J. (1977). The development of thought: Equilibration of cognitive structures. New York: Viking.Google Scholar
  27. Piaget, J. (2001). Studies in reflecting abstraction. Philadelphia: Taylor and Francis.Google Scholar
  28. Piaget, J., & García, R. (1989). Psicogénesis e historia de la ciencia. Madrid, Spain: Siglo Veintiuno Editores, S.A.Google Scholar
  29. Sánchez-Matamoros G. (2004). Análisis de la comprensión en los alumnos de Bachillerato y primer año de la Universidad sobre la noción matemática de derivada (desarrollo del concepto). Doctoral dissertation. Universidad de Sevilla. España.Google Scholar
  30. Sánchez-Matamoros G., García M., & Llinares S. (2006). El desarrollo del esquema de derivada. Enseñanza de las Ciencias, 24(1), 85–98.Google Scholar
  31. Sánchez-Matamoros, G., García, M., & Llinares, S. (2008). La comprensión de la derivada como objeto de investigación en Didáctica de la Matemática. Revista Latinoamericana en Matemática Educativa, 11(2), 267–296.Google Scholar
  32. Simon, M. A., Tzur, R., Heinz, K., & Kinzel, M. (2004). Explicating a mechanism for conceptual learning: Elaborating the construct of reflective abstraction. Journal for Research in Mathematics Education, 35(5), 305–329.CrossRefGoogle Scholar
  33. Skemp, R. R. (1986). The psychology of learning mathematics (2nd ed.). Middlesex, England: Penguin.Google Scholar
  34. Spivak, M. (1974). Calculus. Reverté, S.A.Google Scholar
  35. Steffe, L. P. (1983). Children’s algorithms as schemes. Educational Studies in Mathematics, 14, 109–125.CrossRefGoogle Scholar
  36. Steffe, L. P. (1991). Epistemological foundations of mathematical experiences. New York: Springer.Google Scholar
  37. Thompson, P. W. (2002). Didactic objects and didactic models in radical constructivism. In K. Gravemeijer, R. Lehrer, B. Van Oers, & L. Verschaffel (Eds.), Symbolizing, modelling, and tool use in mathematics education (pp. 197–220). Dordrecht, The Netherlands: Kluwer.Google Scholar
  38. Tzur, R., & Simon, M. (2004). Distinguishing two stages of mathematics conceptual learning. International Journal of Science and Mathematics Education, 2, 287–304.CrossRefGoogle Scholar
  39. Vergnaud, G. (1990). La theorie des champs conceptuels. Recherches en Didactique des Mathematiques, 10, 13.Google Scholar
  40. Zandieth, M. (1997). The evolution of student understanding of the concept of derivative. Doctoral dissertation, Oregon State University.Google Scholar

Copyright information

© National Science Council, Taiwan 2010

Authors and Affiliations

  • Mercedes García
    • 1
    Email author
  • Salvador Llinares
    • 2
  • Gloria Sánchez-Matamoros
    • 3
  1. 1.Departamento de Didáctica de las Matemáticas, Facultad de Ciencias de la EducaciónUniversidad de SevillaSevillaSpain
  2. 2.Departamento de Innovación y Formación DidácticaUniversidad de AlicanteAlicanteSpain
  3. 3.IES “Andrés Benítez”Jerez de la FronteraSpain

Personalised recommendations