Skip to main content
Log in

CHARACTERIZING THEMATIZED DERIVATIVE SCHEMA BY THE UNDERLYING EMERGENT STRUCTURES

  • Published:
International Journal of Science and Mathematics Education Aims and scope Submit manuscript

ABSTRACT

This paper reports on different underlying structures of the derivative schema of three undergraduate students that were considered to be at the trans level of development of the derivative schema (action–process–object–schema). The derivative schema is characterized in terms of the students’ ability to explicitly transfer the relationship between a function and its first derivative to the derivative function and the second derivative. This conscious shift of properties of derivatives is differently manifested by the students in the trans level of development of the derivative schema and can be considered evidence of the different characteristics of the thematization of derivative schema. From here we suggest that there are different underlying structures in the constructed schema due to the consciousness in which students use the relations between a function and its derivative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Apostol, T. M. (1982). Análisis Matemático. Reverté, S.A.

  • Asiala, M., Cottrill, J., Dubinsky, E., & Schwingendorf, K. (1997). The development of students’ graphical understanding of the derivative. Journal of Mathematical Behavior, 16(4), 399–431.

    Article  Google Scholar 

  • Baker, B., Cooley, L., & Trigueros, M. (2000). A calculus graphing schema. The Journal for Research in Mathematics Education, 31(5), 557–578.

    Article  Google Scholar 

  • Berry, J. S., & Nyman, M. A. (2003). Promoting students’ graphical understanding of the calculus. Journal of Mathematical Behavior, 22, 481–497.

    Article  Google Scholar 

  • Campbell, R. L. (2001). Reflecting abstraction in context. Editor’s introduction to J. Piaget, Studies in reflecting abstraction [R. L. Campbell, Ed., Trans] (pp. 1–27). Sussex, UK: Taylor & Francis.

  • Clark, J. M., Cordero, F., Cottrill, J., Czarnocha, B., DeVries, D. J., St. John, D., Tolias, G., et al. (1997). Constructing a schema: The case of the chain rule. Journal of Mathematical Behavior, 14(4), 345–364.

    Article  Google Scholar 

  • Clement, J. (2000). Analysis of clinical interviews: Foundations and model viability. In A. E. Kelly & R. A. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 547–590). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Confrey, J., & Costa, Sh. (1996). A critique of the selection of “mathematical objects” as a central metaphor for advanced mathematical thinking. International Journal of Computer for Mathematical Learning, 1, 139–168.

    Article  Google Scholar 

  • Cooley, L., Trigueros, M., & Baker, B. (2003). Thematization of the calculus graphing schema. In N. Pateman, B. Dougherty, & J. Zilliox (Eds.), Proceedings of the 27th annual meeting of the International Group for the Psychology of Mathematics Education, 2 (pp. 57–64). Honolulu, HI: University of Hawaii.

    Google Scholar 

  • Cooley, L., Trigueros, M., & Baker, B. (2007). Scheme thematization: A framework and an example. Journal for Research in Mathematics Education, 38(4), 370–392.

    Google Scholar 

  • Cottrill, J., Dubinsky, E., Nichols, D., Schwingendorf, K., Thomas, K., & Vidakovic, D. (1996). Understanding the limit concept: Beginning with a coordinated process scheme. The Journal for Mathematical Behavior, 15, 167–192.

    Article  Google Scholar 

  • Davis, G. E., & Tall, D. O. (2002). What is a scheme? In D. Tall & M. Thomas (Eds.), Intelligence, learning and understanding. A tribute to Richard Skemp (pp. 131–150). Flaxton, Queensland, Australia: Post Pressed.

    Google Scholar 

  • Dörfler, W. (2002). Formation of mathematical objects as decision making. Mathematical Thinking and Learning, 4(4), 337–350.

    Article  Google Scholar 

  • Dubinsky, E. (1991a). Reflective abstraction in advanced mathematical thinking. In D. Tall (Ed.), Advanced mathematical thinking (pp. 95–126). Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Dubinsky, E. (1991b). Constructive aspects of reflective abstraction in advanced mathematics. In L. P. Steffe (Ed.), Epistemological foundations of mathematical experiences (pp. 160–202). New York: Springer.

    Google Scholar 

  • Dubinsky, E. (1996). Aplicación de la perspectiva piagetiana a la educación matemática universitaria. Educación Matemática, 8(3), 24–41.

    Google Scholar 

  • Dubinsky, E., Weller, K., McDonald, M. A., & Brown, A. (2005). Some historical issues and paradoxes regarding the concept of infinity: An APOS analysis: Part 1/2. Educational Studies in Mathematics, 58(60), 335–359. 253–266.

    Article  Google Scholar 

  • Edwards, B., Dubinsky, E., & McDonald, M. A. (2005). Advanced mathematical thinking. Mathematical Thinking and Learning, 7(1), 15–25.

    Article  Google Scholar 

  • Goldin, G. (2000). A scientific perspective on structured, task-based interviews in mathematics education research. In A. E. Kelly & R. A. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 517–546). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Habre, S., & Abboud, M. (2006). Students’ conceptual understanding of a function and its derivate in an experimental calculus course. Journal of Mathematical Behavior, 25, 57–72.

    Article  Google Scholar 

  • Hähkiöniemi, M. (2006). Associative and reflective connections between the limit of the difference quotient and limiting process. Journal of Mathematical Behavior, 25, 170–184.

    Article  Google Scholar 

  • Harel, G., Selden, A., & Selden, J. (2006). Advanced mathematical thinking. In A. Gutierrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education (pp. 147–172). Rotterdam, The Netherlands: Sense.

    Google Scholar 

  • Harel, G., & Sowder, L. (2005). Advanced mathematical-thinking at any age: Its nature and its development. Mathematical Thinking and Learning, 7, 27–50.

    Article  Google Scholar 

  • Mason, J., & Jonston-Wilder, S. (2004). Fundamental constructs in mathematics education. London: Routhledge Falmer–The Open University.

    Google Scholar 

  • Meel, D. E. (2003). Modelos y teorías de la comprensión matemática: Comparación de los modelos de Pirie y Kieren sobre la evolución de la comprensión matemática y la teoría APOE. Revista Latinoamericana de Investigación en Matemática Educativa, 6(3), 221–271.

    Google Scholar 

  • Piaget, J. (1977). The development of thought: Equilibration of cognitive structures. New York: Viking.

    Google Scholar 

  • Piaget, J. (2001). Studies in reflecting abstraction. Philadelphia: Taylor and Francis.

    Google Scholar 

  • Piaget, J., & García, R. (1989). Psicogénesis e historia de la ciencia. Madrid, Spain: Siglo Veintiuno Editores, S.A.

    Google Scholar 

  • Sánchez-Matamoros G. (2004). Análisis de la comprensión en los alumnos de Bachillerato y primer año de la Universidad sobre la noción matemática de derivada (desarrollo del concepto). Doctoral dissertation. Universidad de Sevilla. España.

  • Sánchez-Matamoros G., García M., & Llinares S. (2006). El desarrollo del esquema de derivada. Enseñanza de las Ciencias, 24(1), 85–98.

    Google Scholar 

  • Sánchez-Matamoros, G., García, M., & Llinares, S. (2008). La comprensión de la derivada como objeto de investigación en Didáctica de la Matemática. Revista Latinoamericana en Matemática Educativa, 11(2), 267–296.

    Google Scholar 

  • Simon, M. A., Tzur, R., Heinz, K., & Kinzel, M. (2004). Explicating a mechanism for conceptual learning: Elaborating the construct of reflective abstraction. Journal for Research in Mathematics Education, 35(5), 305–329.

    Article  Google Scholar 

  • Skemp, R. R. (1986). The psychology of learning mathematics (2nd ed.). Middlesex, England: Penguin.

    Google Scholar 

  • Spivak, M. (1974). Calculus. Reverté, S.A.

  • Steffe, L. P. (1983). Children’s algorithms as schemes. Educational Studies in Mathematics, 14, 109–125.

    Article  Google Scholar 

  • Steffe, L. P. (1991). Epistemological foundations of mathematical experiences. New York: Springer.

    Google Scholar 

  • Thompson, P. W. (2002). Didactic objects and didactic models in radical constructivism. In K. Gravemeijer, R. Lehrer, B. Van Oers, & L. Verschaffel (Eds.), Symbolizing, modelling, and tool use in mathematics education (pp. 197–220). Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Tzur, R., & Simon, M. (2004). Distinguishing two stages of mathematics conceptual learning. International Journal of Science and Mathematics Education, 2, 287–304.

    Article  Google Scholar 

  • Vergnaud, G. (1990). La theorie des champs conceptuels. Recherches en Didactique des Mathematiques, 10, 13.

    Google Scholar 

  • Zandieth, M. (1997). The evolution of student understanding of the concept of derivative. Doctoral dissertation, Oregon State University.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mercedes García.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García, M., Llinares, S. & Sánchez-Matamoros, G. CHARACTERIZING THEMATIZED DERIVATIVE SCHEMA BY THE UNDERLYING EMERGENT STRUCTURES. Int J of Sci and Math Educ 9, 1023–1045 (2011). https://doi.org/10.1007/s10763-010-9227-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10763-010-9227-2

KEY WORDS

Navigation