Skip to main content
Log in

CRITICAL FEATURES OF VISUALIZATIONS OF TRANSPORT THROUGH THE CELL MEMBRANE—AN EMPIRICAL STUDY OF UPPER SECONDARY AND TERTIARY STUDENTS’ MEANING-MAKING OF A STILL IMAGE AND AN ANIMATION

  • Published:
International Journal of Science and Mathematics Education Aims and scope Submit manuscript

Abstract

Images, diagrams, and other forms of visualization are playing increasingly important roles in molecular life science teaching and research, both for conveying information and as conceptual tools, transforming the way we think about the events and processes the subject covers. This study examines how upper secondary and tertiary students interpret visualizations of transport through the cell membrane in the form of a still image and an animation. Twenty upper secondary and five tertiary students were interviewed. In addition, 31 university students participated in a group discussion and answered a questionnaire regarding the animation. A model, based on variation theory, was then tested as a tool for distinguishing between what is expected to be learned, what is present in the visualizations, and what is actually learned by the students. Three critical features of the ability to visualize biomolecular processes were identified from the students’ interpretations of the animation: the complexity of biomolecular processes, the dynamic and random nature of biomolecular interactions, and extrapolation between 2D and 3D. The results of this study support the use of multiple representations to achieve different learning goals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abell, S., & Smith, D. (1994). Analytical induction. International Journal of Science Education, 16, 473–487.

    Article  Google Scholar 

  • Agre, P., Preston, G. M., Smith, B. L., Jung, J. S., Raina, S., Moon, C., et al. (1993). Aquaporin CHIP: The archetypal molecular water channel. American Journal of Physiology—Renal Physiology, 265(4), 463–476.

    Google Scholar 

  • Ainsworth, S. (1999). A functional taxonomy of multiple representations. Computers and Education, 33(2/3), 131–152.

    Article  Google Scholar 

  • Ainsworth, S. (2008). The educational value of multiple-representations when learning complex scientific concepts. In J. K. Gilbert, M. Reiner & M. Nakhleh (Eds.), Visualization: Theory and practice in science education. Dordrecht: Springer.

    Google Scholar 

  • Campbell, A. M., & Heyer, L. J. (2007). Discovering genomics, proteomics, and bioinformatics (2nd ed.). San Francisco: Pearson Education, Benjamin Cummings.

    Google Scholar 

  • Chi, M. T. H. (2006). Two approaches to the study of expert’s characteristics. In K. A. Ericsson (Ed.), The Cambridge handbook of expertise and expert performance (pp. 21–38). Cambridge: Cambridge University Press.

    Google Scholar 

  • Cook, M., Carter, G., & Wiebe, E. N. (2008). The interpretation of cellular transport graphics by students with low and high prior knowledge. International Journal of Science Education, 30(2), 239–261.

    Article  Google Scholar 

  • De Groot, B. L., & Grubmüller, H. (2001). Plenary talks. Science, 294, 2353–2357.

    Article  Google Scholar 

  • Fettiplace, R., & Haydon, D. A. (1980). Water permeability of lipid membranes. Physiological Reviews, 60(2), 510–550.

    Google Scholar 

  • Gilbert, J. K. (ed). (2005). Visualization in science education. Dordrecht: Springer.

    Google Scholar 

  • Gilbert, J. K., Reiner, M., & Nakhleh, M. (2008). Introduction. In J. K. Gilbert, M. Reiner & M. Nakhleh (Eds.), Visualization: Theory and practice in science education. Dordrecht: Springer.

    Chapter  Google Scholar 

  • Gilbert, J. K., Reiner, M., & Nakhleh, M. (Eds.). (2008b). Visualization: Theory and practice in science education. Dordrecht: Springer.

  • Gordin, D. N., & Pea, R. D. (1995). Prospects for scientific visualization as an educational technology. Journal of the Learning Sciences, 4, 249–279.

    Article  Google Scholar 

  • Harrison, A. G., & Treagust, D. F. (2000). A typology of school science models. International Journal of Science Education, 22(9), 1011–1026.

    Article  Google Scholar 

  • King, L. S., & Agre, P. (1996). Pathophysiology of the aquaporin water channels. Annual Review of Physiology, 58, 619–648.

    Article  Google Scholar 

  • Kozma, R. (2003). The material features of multiple representations and their cognitive and social affordances for science understanding. Learning and Instruction, 13, 205–226.

    Article  Google Scholar 

  • Kozma, R., Chin, E., Russell, J., & Marx, N. (2000). The roles of representations and tools in the chemistry laboratory and their implications for chemistry learning. The Journal of the Learning Sciences, 9(2), 105–143.

    Article  Google Scholar 

  • Kozma, R., & Russell, J. (2005). Students becoming chemists: Developing representational competence. In J. K. Gilbert (Ed.), Visualization in science education (pp. 121–146). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Kress, G. (2003). Literacy in the new media age. New York: Routledge.

    Book  Google Scholar 

  • Kvale, S. (1996). Interviews. Thousand Oaks: Sage.

    Google Scholar 

  • Lewalter, D. (2003). Cognitive strategies for learning from static and dynamic visuals. Learning and Instruction, 13, 177–189.

    Article  Google Scholar 

  • Lowe, R. K. (2003). Animation and learning: Selective processing of information in dynamic graphics. Learning and Instruction, 13, 157–176.

    Article  Google Scholar 

  • Marbach-Ad, G., Rotbain, Y., & Stavy, R. (2008). Using computer animation and illustration activities to improve high school students' achievement in molecular genetics. Journal of Research in Science Teaching, 45(3), 273–292.

    Article  Google Scholar 

  • Marton, F. (2006). Sameness and difference in transfer. The Journal of the Learning Sciences, 15(4), 501–537.

    Article  Google Scholar 

  • Marton, F., & Booth, S. (1997). Learning and awareness. Mahwah: Lawrence Erlbaum.

    Google Scholar 

  • Marton, F., & Tsui, A. (eds). (2004). Classroom discourse and the space of learning. Mahwah: Lawrence Erlbaum.

    Google Scholar 

  • Menger, F. M., Zana, R., & Lindman, B. (1998). Portraying the structure of micelles. Journal of Chemical Education, 75(1), 115.

    Article  Google Scholar 

  • Pallant, A., & Tinker, R. F. (2004). Reasoning with atomic-scale molecular dynamic models. Journal of Science Education and Technology, 13(1), 51–66.

    Article  Google Scholar 

  • Rundgren, C.-J. (2006). Att börja tala ‘biokemiska’—betydelsen av metaforer och hjälpord för meningsskapande kring proteiner. Nordina. Nordic Studies in Science Education, 1(5), 30–42.

    Google Scholar 

  • Sanger, M. J., Brecheisen, D. M., & Hynek, B. M. (2001). Can computer animations affect college biology students’ conceptions about diffusion and osmosis? The American Biology Teacher, 63(2), 104–109.

    Article  Google Scholar 

  • Schnotz, W. (2005). An integrated model of text and model integration. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 19–30). New York: Cambridge University Press.

    Google Scholar 

  • Schnotz, W., & Bannert, M. (2003). Construction and interference in learning from multiple representation. Learning and Instruction, 13, 141–156.

    Article  Google Scholar 

  • Schönborn, K. J., & Anderson, T. R. (2006). The importance of visual literacy in the education of biochemists. Biochemistry and Molecular Biology Education, 34(2), 94–102.

    Article  Google Scholar 

  • Schönborn, K. J., & Anderson, T. R. (2008). A model of factors determining students' ability to interpret external representations in biochemistry. International Journal of Science Education, 31, 193–232. doi:10.1080/09500690701670535.

    Article  Google Scholar 

  • Schönborn, K. J., Anderson, T. R., & Grayson, D. J. (2002). Student difficulties with the interpretation of a textbook diagram of immunoglobulin G (IgG). Biochemistry and Molecular Biology Education, 30(2), 93–97.

    Article  Google Scholar 

  • Tasker, R. F., & Dalton, R. M. (2006). Research into practice: Visualisation of the molecular world using animations. Chemistry Education Research and Practice, 7, 141–159.

    Google Scholar 

  • Tasker, R. F., & Dalton, R. M. (2008). Visualizing the molecular world—design, evaluation, and use of animations. In J. K. Gilbert, M. Reiner & M. Nakhleh (Eds.), Visualization: Theory and practice in science education (pp. 103–131). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Tieleman, D. P., Marrink, S. J., & Berendsen, H. J. C. (1997). A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. Biochimica et Biophysica Acta, 1331, 235–270.

    Google Scholar 

  • Tversky, B., Morrison, J.-B., & Betrancourt, M. (2002). Animation: Can it facilitate? International Journal of Human Computer Studies, 57, 247–262.

    Article  Google Scholar 

  • Williamson, V. M., & Abraham, M. R. (1995). The effects of computer animation of the particulate mental models of college chemistry students. Journal of Research in Science Teaching, 57, 247–262.

    Google Scholar 

  • Wu, H. K., Krajcik, J. S., & Soloway, E. (2001). Promoting understanding of chemical representations: Students’ use of a visualization tool in the classroom. Journal of Research in Science Teaching, 38(7), 5821–5842.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl-Johan Rundgren.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

Appendix 1: Interview guide. (DOC 25 kb)

ESM 2

Appendix 2: Questionnaire: transport of water molecules through the cell membrane. (DOC 529 kb)

ESM 3

Appendix 3: The two visualizations. (DOC 358 kb)

ESM 4

Appendix 4: Example of critical features identified from students’ interpretation of the diagram. (DOC 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rundgren, CJ., Tibell, L.A.E. CRITICAL FEATURES OF VISUALIZATIONS OF TRANSPORT THROUGH THE CELL MEMBRANE—AN EMPIRICAL STUDY OF UPPER SECONDARY AND TERTIARY STUDENTS’ MEANING-MAKING OF A STILL IMAGE AND AN ANIMATION. Int J of Sci and Math Educ 8, 223–246 (2010). https://doi.org/10.1007/s10763-009-9171-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10763-009-9171-1

Key words

Navigation