• Carl-Johan RundgrenEmail author
  • Lena A. E. Tibell


Images, diagrams, and other forms of visualization are playing increasingly important roles in molecular life science teaching and research, both for conveying information and as conceptual tools, transforming the way we think about the events and processes the subject covers. This study examines how upper secondary and tertiary students interpret visualizations of transport through the cell membrane in the form of a still image and an animation. Twenty upper secondary and five tertiary students were interviewed. In addition, 31 university students participated in a group discussion and answered a questionnaire regarding the animation. A model, based on variation theory, was then tested as a tool for distinguishing between what is expected to be learned, what is present in the visualizations, and what is actually learned by the students. Three critical features of the ability to visualize biomolecular processes were identified from the students’ interpretations of the animation: the complexity of biomolecular processes, the dynamic and random nature of biomolecular interactions, and extrapolation between 2D and 3D. The results of this study support the use of multiple representations to achieve different learning goals.

Key words

life science education multimodal learning phenomenography variation theory visualization water transport 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10763_2009_9171_MOESM1_ESM.doc (25 kb)
ESM 1 Appendix 1: Interview guide. (DOC 25 kb)
10763_2009_9171_MOESM2_ESM.doc (530 kb)
ESM 2 Appendix 2: Questionnaire: transport of water molecules through the cell membrane. (DOC 529 kb)
10763_2009_9171_MOESM3_ESM.doc (358 kb)
ESM 3 Appendix 3: The two visualizations. (DOC 358 kb)
10763_2009_9171_MOESM4_ESM.doc (26 kb)
ESM 4 Appendix 4: Example of critical features identified from students’ interpretation of the diagram. (DOC 25 kb)


  1. Abell, S., & Smith, D. (1994). Analytical induction. International Journal of Science Education, 16, 473–487.CrossRefGoogle Scholar
  2. Agre, P., Preston, G. M., Smith, B. L., Jung, J. S., Raina, S., Moon, C., et al. (1993). Aquaporin CHIP: The archetypal molecular water channel. American Journal of Physiology—Renal Physiology, 265(4), 463–476.Google Scholar
  3. Ainsworth, S. (1999). A functional taxonomy of multiple representations. Computers and Education, 33(2/3), 131–152.CrossRefGoogle Scholar
  4. Ainsworth, S. (2008). The educational value of multiple-representations when learning complex scientific concepts. In J. K. Gilbert, M. Reiner & M. Nakhleh (Eds.), Visualization: Theory and practice in science education. Dordrecht: Springer.Google Scholar
  5. Campbell, A. M., & Heyer, L. J. (2007). Discovering genomics, proteomics, and bioinformatics (2nd ed.). San Francisco: Pearson Education, Benjamin Cummings.Google Scholar
  6. Chi, M. T. H. (2006). Two approaches to the study of expert’s characteristics. In K. A. Ericsson (Ed.), The Cambridge handbook of expertise and expert performance (pp. 21–38). Cambridge: Cambridge University Press.Google Scholar
  7. Cook, M., Carter, G., & Wiebe, E. N. (2008). The interpretation of cellular transport graphics by students with low and high prior knowledge. International Journal of Science Education, 30(2), 239–261.CrossRefGoogle Scholar
  8. De Groot, B. L., & Grubmüller, H. (2001). Plenary talks. Science, 294, 2353–2357.CrossRefGoogle Scholar
  9. Fettiplace, R., & Haydon, D. A. (1980). Water permeability of lipid membranes. Physiological Reviews, 60(2), 510–550.Google Scholar
  10. Gilbert, J. K. (ed). (2005). Visualization in science education. Dordrecht: Springer.Google Scholar
  11. Gilbert, J. K., Reiner, M., & Nakhleh, M. (2008). Introduction. In J. K. Gilbert, M. Reiner & M. Nakhleh (Eds.), Visualization: Theory and practice in science education. Dordrecht: Springer.CrossRefGoogle Scholar
  12. Gilbert, J. K., Reiner, M., & Nakhleh, M. (Eds.). (2008b). Visualization: Theory and practice in science education. Dordrecht: Springer.Google Scholar
  13. Gordin, D. N., & Pea, R. D. (1995). Prospects for scientific visualization as an educational technology. Journal of the Learning Sciences, 4, 249–279.CrossRefGoogle Scholar
  14. Harrison, A. G., & Treagust, D. F. (2000). A typology of school science models. International Journal of Science Education, 22(9), 1011–1026.CrossRefGoogle Scholar
  15. King, L. S., & Agre, P. (1996). Pathophysiology of the aquaporin water channels. Annual Review of Physiology, 58, 619–648.CrossRefGoogle Scholar
  16. Kozma, R. (2003). The material features of multiple representations and their cognitive and social affordances for science understanding. Learning and Instruction, 13, 205–226.CrossRefGoogle Scholar
  17. Kozma, R., Chin, E., Russell, J., & Marx, N. (2000). The roles of representations and tools in the chemistry laboratory and their implications for chemistry learning. The Journal of the Learning Sciences, 9(2), 105–143.CrossRefGoogle Scholar
  18. Kozma, R., & Russell, J. (2005). Students becoming chemists: Developing representational competence. In J. K. Gilbert (Ed.), Visualization in science education (pp. 121–146). Dordrecht: Springer.CrossRefGoogle Scholar
  19. Kress, G. (2003). Literacy in the new media age. New York: Routledge.CrossRefGoogle Scholar
  20. Kvale, S. (1996). Interviews. Thousand Oaks: Sage.Google Scholar
  21. Lewalter, D. (2003). Cognitive strategies for learning from static and dynamic visuals. Learning and Instruction, 13, 177–189.CrossRefGoogle Scholar
  22. Lowe, R. K. (2003). Animation and learning: Selective processing of information in dynamic graphics. Learning and Instruction, 13, 157–176.CrossRefGoogle Scholar
  23. Marbach-Ad, G., Rotbain, Y., & Stavy, R. (2008). Using computer animation and illustration activities to improve high school students' achievement in molecular genetics. Journal of Research in Science Teaching, 45(3), 273–292.CrossRefGoogle Scholar
  24. Marton, F. (2006). Sameness and difference in transfer. The Journal of the Learning Sciences, 15(4), 501–537.CrossRefGoogle Scholar
  25. Marton, F., & Booth, S. (1997). Learning and awareness. Mahwah: Lawrence Erlbaum.Google Scholar
  26. Marton, F., & Tsui, A. (eds). (2004). Classroom discourse and the space of learning. Mahwah: Lawrence Erlbaum.Google Scholar
  27. Menger, F. M., Zana, R., & Lindman, B. (1998). Portraying the structure of micelles. Journal of Chemical Education, 75(1), 115.CrossRefGoogle Scholar
  28. Pallant, A., & Tinker, R. F. (2004). Reasoning with atomic-scale molecular dynamic models. Journal of Science Education and Technology, 13(1), 51–66.CrossRefGoogle Scholar
  29. Rundgren, C.-J. (2006). Att börja tala ‘biokemiska’—betydelsen av metaforer och hjälpord för meningsskapande kring proteiner. Nordina. Nordic Studies in Science Education, 1(5), 30–42.Google Scholar
  30. Sanger, M. J., Brecheisen, D. M., & Hynek, B. M. (2001). Can computer animations affect college biology students’ conceptions about diffusion and osmosis? The American Biology Teacher, 63(2), 104–109.CrossRefGoogle Scholar
  31. Schnotz, W. (2005). An integrated model of text and model integration. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 19–30). New York: Cambridge University Press.Google Scholar
  32. Schnotz, W., & Bannert, M. (2003). Construction and interference in learning from multiple representation. Learning and Instruction, 13, 141–156.CrossRefGoogle Scholar
  33. Schönborn, K. J., & Anderson, T. R. (2006). The importance of visual literacy in the education of biochemists. Biochemistry and Molecular Biology Education, 34(2), 94–102.CrossRefGoogle Scholar
  34. Schönborn, K. J., & Anderson, T. R. (2008). A model of factors determining students' ability to interpret external representations in biochemistry. International Journal of Science Education, 31, 193–232. doi: 10.1080/09500690701670535.CrossRefGoogle Scholar
  35. Schönborn, K. J., Anderson, T. R., & Grayson, D. J. (2002). Student difficulties with the interpretation of a textbook diagram of immunoglobulin G (IgG). Biochemistry and Molecular Biology Education, 30(2), 93–97.CrossRefGoogle Scholar
  36. Tasker, R. F., & Dalton, R. M. (2006). Research into practice: Visualisation of the molecular world using animations. Chemistry Education Research and Practice, 7, 141–159.Google Scholar
  37. Tasker, R. F., & Dalton, R. M. (2008). Visualizing the molecular world—design, evaluation, and use of animations. In J. K. Gilbert, M. Reiner & M. Nakhleh (Eds.), Visualization: Theory and practice in science education (pp. 103–131). Dordrecht: Springer.CrossRefGoogle Scholar
  38. Tieleman, D. P., Marrink, S. J., & Berendsen, H. J. C. (1997). A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. Biochimica et Biophysica Acta, 1331, 235–270.Google Scholar
  39. Tversky, B., Morrison, J.-B., & Betrancourt, M. (2002). Animation: Can it facilitate? International Journal of Human Computer Studies, 57, 247–262.CrossRefGoogle Scholar
  40. Williamson, V. M., & Abraham, M. R. (1995). The effects of computer animation of the particulate mental models of college chemistry students. Journal of Research in Science Teaching, 57, 247–262.Google Scholar
  41. Wu, H. K., Krajcik, J. S., & Soloway, E. (2001). Promoting understanding of chemical representations: Students’ use of a visualization tool in the classroom. Journal of Research in Science Teaching, 38(7), 5821–5842.CrossRefGoogle Scholar

Copyright information

© National Science Council, Taiwan 2009

Authors and Affiliations

  1. 1.Department of Social and Welfare StudiesLinköping UniversityNorrköpingSweden
  2. 2.Visual Learning and Communication Department of Science and Technology, ITNLinköping UniversityNorrköpingSweden

Personalised recommendations