Advertisement

EVALUATING STUDENTS’ UNDERSTANDING OF KINETIC PARTICLE THEORY CONCEPTS RELATING TO THE STATES OF MATTER, CHANGES OF STATE AND DIFFUSION: A CROSS-NATIONAL STUDY

  • David F. TreagustEmail author
  • A. L. Chandrasegaran
  • Julianne Crowley
  • Benny H. W. Yung
  • Irene P.-A. Cheong
  • Jazilah Othman
Article

Abstract

This paper reports on the understanding of three key conceptual categories relating to the kinetic particle theory: (1) intermolecular spacing in solids, liquids and gases, (2) changes of state and intermolecular forces and (3) diffusion in liquids and gases, amongst 148 high school students from Brunei, Australia, Hong Kong and Singapore using 11 multiple-choice items that required students to provide explanations for their selection of particular responses to the items. Students’ responses to the items revealed limited understanding of the particle theory concepts, with nine alternative conceptions held by more than 10% of various samples of students. Also, 40.5–78.4% of all students indicated consistent understanding relating to the three conceptual categories based on their responses to the 11 items. However, when their explanations were taken into account, very few students displayed consistent understanding of the related concepts.

Key words

alternative conceptions changes of state diffusion intermolecular forces intermolecular spacing kinetic particle theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10763_2009_9166_MOESM1_ESM.doc (672 kb)
ESM1 (DOC 672 kb)

References

  1. Andersson, B. (1986). Pupils’ explanations of some aspects of chemical reactions. Science Education, 70, 549–563.CrossRefGoogle Scholar
  2. Andersson, B. (1990). Pupil’s conceptions of matter and its transformations (age 12–16). Studies in Science Education, 18, 53–85.CrossRefGoogle Scholar
  3. Ben-Zvi, R., Eylon, B., & Silberstein, J. (1986). Is an atom of copper malleable? Journal of Chemical Education, 63(1), 64–66.CrossRefGoogle Scholar
  4. Coll, R. K., France, B., & Taylor, I. (2005). The role of models and analogies in science. International Journal of Science Education, 27(2), 183–198.CrossRefGoogle Scholar
  5. de Vos, W., & Verdonk, A. H. (1996). The particulate nature of matter in science education and in science. Journal of Research in Science Teaching, 33(6), 657–664.CrossRefGoogle Scholar
  6. Driver, R. (1985). Beyond appearances: The conservation of matter under physical and chemical transformations. In R. Driver, E. Guesne & A. Tiberghien (Eds.), Children’s ideas in science (pp. 145–169). Milton Keynes: Open University Press.Google Scholar
  7. Driver, R., Asoko, H., Leach, J., Mortimer, E., & Scott, P. (1994). Constructing scientific knowledge in the classroom. Education Researcher, 23(7), 5–12.Google Scholar
  8. Fischler, H., & Reiners, C. S. (eds). (2006). Die Teilchenstructur der Materie im Physik- und Chemieunterricht (The particle structure of materials in physics and chemistry instruction). Berlin: Logos.Google Scholar
  9. Garnett, P. J., Garnett, P. J., & Hackling, M. W. (1995). Students' alternative conceptions in chemistry: A review of research and implications for teaching and learning. Studies in Science Education, 25, 69–95.CrossRefGoogle Scholar
  10. Gilbert, J. K., De Jong, O., Justi, R., Treagust, D. F., & Van Driel, J. H. (eds). (2002). Chemical education: Towards, research-based practices (Vol. 17). Dordrecht: Springer.Google Scholar
  11. Griffiths, A. K., & Preston, K. R. (1992). Grade-12 students’ misconceptions relating to fundamental characteristics of atoms and molecules. Journal of Research in Science Teaching, 29, 611–628.CrossRefGoogle Scholar
  12. Harrison, A. G. (2001). Textbooks for outcomes science: A review. The Queensland Science Teacher, 27(6), 20–22.Google Scholar
  13. Harrison, A. G., & Treagust, D. F. (2000). A typology of school science models. International Journal of Science Education, 22(9), 1011–1026.CrossRefGoogle Scholar
  14. Harrison, A. G., & Treagust, D. F. (2002). The particulate nature of matter: Challenges in understanding the submicroscopic world. In J. K. Gilbert, Od Jong, R. Justi, D. F. Treagust & J Hv Driel (Eds.), Chemical education: Towards research-based practice (pp. 189–212). Dordrecht: Kluwer Academic.Google Scholar
  15. Johnson, P. (1998). Progression in children’s understanding of ‘basic’ particle theory: A longitudinal study. International Journal of Science Education, 20(4), 393–412.CrossRefGoogle Scholar
  16. Johnson, P. (2006). The development of students’ understanding of the particle theory and its role in their conception of macroscopic phenomena. In H. Fischler & C. S. Reiners (Eds.), Die Teilchenstructur der Materie im Physik- und Chemieunterricht (The particle structure of materials in physics and chemistry instruction) (pp. 109–143). Berlin: Logos.Google Scholar
  17. Justi, R., & Gilbert, J. K. (2002). Models and modelling in chemical education (2002). In J. K. Gilbert, Od Jong, R. Justi, D. F. Treagust & J Hv Driel (Eds.), Chemical education: Towards research-based practice (pp. 189–212). Dordrecht: Kluwer Academic.Google Scholar
  18. Krnel, D., Watson, R., & Glazar, S. A. (1998). Survey of research related to the development of the concept of ‘matter’. International Journal of Science Education, 20(3), 257–389.CrossRefGoogle Scholar
  19. Lee, O., Eichinger, D. C., Anderson, C. W., Berkheimer, G. D., & Blakeslee, T. D. (1993). Changing middle school students’ conceptions of matter and molecules. Journal of Research in Science Teaching, 30(3), 249–270.CrossRefGoogle Scholar
  20. Liu, S.-C. (2005). Models of “the heavens and the earth”: An investigation of German and Taiwanese students’ alternative conceptions of the universe. International Journal of Science and Mathematics Education, 3(2), 295–325.CrossRefGoogle Scholar
  21. Nakhleh, M. B. (1992). Why some students don’t learn chemistry: Chemical misconceptions. Journal of Chemical Education, 69(3), 191–196.CrossRefGoogle Scholar
  22. Nunally, J. C., & Bernstein, I. H. (1994). Psychometric theory (3rd ed.). New York: McGraw-Hill.Google Scholar
  23. Othman, J., Treagust, D. F., & Chandrasegaran, A. L. (2008). An investigation into the relationship between students’ conceptions of the particulate nature of matter and their understanding of chemical bonding. International Journal of Science Education, 30(11), 1531–1550.CrossRefGoogle Scholar
  24. Peterson, R. F., Treagust, D. F., & Garnett, P. J. (1989). Development and application of a diagnostic instrument to evaluate grade 11 & 12 students’ concepts of covalent bonding and structure after a course of instruction. Journal of Research in Science Teaching, 26(4), 301–314.CrossRefGoogle Scholar
  25. Stavy, R. (1988). Children’s conception of gas. International Journal of Science Education, 10(5), 553–560.CrossRefGoogle Scholar
  26. Stavy, R. (1990). Children’s conceptions of changes in the state of matter: From liquid (or solid) to gas. Journal of Research in Science Teaching, 27(3), 247–266.CrossRefGoogle Scholar
  27. Stavy, R., & Stachel, D. (1985). Children’s ideas about “solid” and “liquid”. European Journal of Science Education, 7, 407–421.Google Scholar
  28. Taber, K. S. (1996). Chlorine is an oxide, heat causes molecules to melt, and sodium reacts badly in chlorine: A survey of the background knowledge of one A-level chemistry class. School Science Review, 78(282), 39–48.Google Scholar
  29. Tan, K. C. D., Taber, K. S., Liu, X., Coll, R. K., Lorenzo, M., & Li, J. (2008). Students’ conceptions of ionisation energy: A cross-cultural study. International Journal of Science Education, 30(2), 263–283.CrossRefGoogle Scholar
  30. Treagust, D. F., & Chandrasegaran, A. L. (2007). The Taiwan National Science Concept Learning Study in an international perspective. International Journal of Science Education, 29(4), 391–403.CrossRefGoogle Scholar
  31. Treagust, D. F., Jacobowitz, R., Gallagher, J. J., & Parker, J. (2003). Embedded assessment in your teaching. Science Scope, 26(6), 36–39.Google Scholar
  32. Wandersee, J. H., Mintzes, J. J., & Novak, J. D. (1994). Research on alternative conceptions in science. In D. L. Gabel (Ed.), Handbook of research in science teaching and learning (pp. 177–210). New York: Macmillan.Google Scholar
  33. Wilhelm, J. A., Smith, W. S., Walters, K. L., Sherrod, S. E., & Mulholland, J. (2008). Engaging pre-service teachers in multinational, multi-campus scientific and mathematical inquiry. International Journal of Science and Mathematics Education, 6(1), 131–162.CrossRefGoogle Scholar
  34. Yuenyong, C., Jones, A., & Yutakom, N. (2008). A comparison of Thailand and New Zealand students’ ideas about energy related to technological and societal issues. International Journal of Science and Mathematics Education, 6(2), 293–311.CrossRefGoogle Scholar

Copyright information

© National Science Council, Taiwan 2009

Authors and Affiliations

  • David F. Treagust
    • 1
    Email author
  • A. L. Chandrasegaran
    • 1
  • Julianne Crowley
    • 1
  • Benny H. W. Yung
    • 2
  • Irene P.-A. Cheong
    • 3
  • Jazilah Othman
    • 4
  1. 1.Science and Mathematics Education CentreCurtin University of TechnologyPerthAustralia
  2. 2.Faculty of EducationUniversity of Hong KongHong KongChina
  3. 3.Sultan Hassanal Bolkiah Institute of EducationUniversiti Brunei DarussalamBandar Seri BegawanBrunei
  4. 4.Maris Stella High SchoolSingaporeSingapore

Personalised recommendations