Advertisement

DESIGNING AND EVALUATING RESEARCH-BASED INSTRUCTIONAL SEQUENCES FOR INTRODUCING MAGNETIC FIELDS

  • Jenaro Guisasola
  • Jose Manuel AlmudiEmail author
  • Mikel Ceberio
  • Jose Luis Zubimendi
Article

Abstract

This study examines the didactic suitability of introducing a teaching sequence when teaching the concept of magnetic fields within introductory physics courses at the university level. This instructional sequence was designed taking into account students’ common conceptions, an analysis of the course content, and the history of the development of ideas about magnetic fields. The evaluation is undertaken by comparing the results with a control group using written questionnaires and analyzing recordings of class discussion. The results show that the elements within the sequence help students to reconcile an overall description with field analysis of magnetic interactions.

Key words

designing instructional sequences student learning teaching of magnetic fields 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arons, A. B. (1990). A guide to introductory physics teaching. New York: Wiley.Google Scholar
  2. Bagno, E. & Eylon, B. (1997). From problem solving to a knowledge structure: An example from the domain of electromagnetism. American Journal of Physics, 65(8), 726–736.CrossRefGoogle Scholar
  3. Bar, V., Zinn, B. & Rubin, E. (1997). Children’s ideas about action a distance. International Journal of Science Education, 19(10), 1137–1157.CrossRefGoogle Scholar
  4. Borges, A. T. & Gilbert, J. K. (1998). Models of magnetism. International Journal of Science Education, 20(3), 361–378.CrossRefGoogle Scholar
  5. Boud, D. & Feletti, G. (Eds.). (1991). The challenge of problem-based learning. New York: St. Martin’ Press.Google Scholar
  6. Crocker, A. C. (1969). Statistics for the teacher or how to put figures in their places. Middlesex: Penguin Books.Google Scholar
  7. Duit, R. (2006). Students’ and Teachers’ Conceptions and Science Education in http://www.ipn.uni-kiel.de/aktuell/stcse/stcse.html, consulted May 2006.
  8. Ericsson, K. A. & Simon, H. A. (1984). Protocol analysis: verbal reports as data. Cambridge: MIT Press.Google Scholar
  9. Ferguson, G. A. & Takane, Y. (1989). Statistical analysis in psychology and education. McGraw Hill. International Editions/Psychology Series.Google Scholar
  10. Galili, I. & Kaplan, D. (1997). Changing approach to teaching electromagnetism in a conceptually oriented introductory physics course. American Journal of Physics, 65(7), 657–667.CrossRefGoogle Scholar
  11. Gil, D. (2003). Constructivism in science education: the need for a clear line of demarcation. In D. Psillos, P. Kariotoglou, V. Tselfes, E. Hatzikraniotis, G. Fassoulopoulos & M. Kallery (Eds.), Science education in the knowledge-based society. Dordrecht: Kluwer Academic Publishers.Google Scholar
  12. Greca, I. M. & Moreira, M. A. (1998). Modelos mentales y aprendizaje de Física en electricidad y magnetismo. Enseñanza de las Ciencias, 16(2), 289–303.Google Scholar
  13. Jimenez-Alexaindre, M. P., Rodriguez, A. B. & Duschl, R. A. (2000). Doing the lesson or ‘doing science’: argument in high school genetics. Science Education, 84(6), 757–792.CrossRefGoogle Scholar
  14. Kelley, A. (2003). Theme issue: the role of design in educational research. Educational Researcher, 32(1), 3–4.CrossRefGoogle Scholar
  15. Leach, J. & Scott, P. (2003). Individual and sociocultural views of learning in science education. Science and Education, 12(1), 91–113.CrossRefGoogle Scholar
  16. Lijnse, P. & Klaassen, K. (2004). Didactical structures as an outcome of research on teaching-learning sequences? International Journal of Science Education, 26(5), 537–554.CrossRefGoogle Scholar
  17. Maarouf, A. & Benyamna, S. (1997). La construction des sciences physiques par les représentations et les erreurs: cas des phenomènes magnétiques. Didaskalia, 11, 103–120.Google Scholar
  18. Maloney, D. P., O’Kuma, T. L., Hieggelke, C. J. & Van Heuvelen, A. (2001). Surveying students’ conceptual knowledge of electricity and magnetism. Phys. Educ. Res., American Journal of Physics Suppl., 69(7), 12–23, July 2001.Google Scholar
  19. Meheut, M. (2004). Designing and validation two teaching-learning sequences about particle models. International Journal of Science Education, 26(5), 605–618.CrossRefGoogle Scholar
  20. Meheut, M. & Psillos, D. (2004). Teaching-learning sequences: aims and tools for science education research. International Journal of Science Education, 26(5), 515–535.CrossRefGoogle Scholar
  21. Mortimer, E. F. & Scott, P. (2000). Analysing discourse in the science classroom. In L. Millar & J. Osborne (Eds.), Improving science education: the contribution of research (pp. 126–142). Buckingham: Open University Press.Google Scholar
  22. Pais de Sousa, M. G. (1997). Forças e campos magnéticos. Tesis Doctoral. Universidad de Aveiro.Google Scholar
  23. Pocovi, M. C. & Finley, L. (2002). Lines of force: Faraday’s and student’s views. Science and Education, 11(5), 459–474. Proceedings of International Conference on Undergraduate Physics Education. New York: American Institute of Physics.Google Scholar
  24. Savery, J. R. & Duffy, T. M. (1995). Problem-based learning: an instructional model and its constructivist framework. Educational Technology, 35, 31–36.Google Scholar
  25. Sears, W. S., Zemansky, M. W., Young, H. D. & Freedman, R. A. (1999). University Physics, Volume 2. Addison-Wesley. Edited in Spanish by Addison-Wesley (Mexico).Google Scholar
  26. Tipler, P. A. (1999). Physics for Scientists and Engineers, vol. 2. W.H. Freeman and Company/ Worth Publishers. Edited in Spanish by Editorial Reverté (Barcelona).Google Scholar
  27. Törnkvist, S., Petterson, K. A. & Tranströmer, G. (1993). Confusion by representation: on student’s comprehension of the electric field concept. American Journal of Physics, 61(4), 335–338.CrossRefGoogle Scholar
  28. Velazco, S. (1998). El campo electromagnético en la enseñanza y el aprendizaje de la Física, tesina pre-doctoral. Argentina: Universidad Nacional de Tucumán.Google Scholar
  29. Wandersee, J. H., Mintzes, J. J. & Novak, J. D. (1994). Research on alternative conceptions in Science. Handbook of Research on Science Teaching and Learning. New York: McMillan Publishing Company.Google Scholar
  30. Watts, M., Gould, G. & Alsop, S. (1997). Questions of understanding: categorising pupils’ questions in Science. School Science Review, 79, 57–63.Google Scholar
  31. White, R. T. & Gunstone, R. F. (1992). Probing understanding. London: Palmer Press.Google Scholar

Copyright information

© National Science Council, Taiwan 2008

Authors and Affiliations

  • Jenaro Guisasola
    • 1
    • 2
  • Jose Manuel Almudi
    • 1
    • 3
    Email author
  • Mikel Ceberio
    • 1
    • 3
  • Jose Luis Zubimendi
    • 1
    • 3
  1. 1.University of the Basque CountrySan SebastianSpain
  2. 2.Escuela Universitaria Politécnica San SebastianSan SebastianSpain
  3. 3.Escuela Universitaria de Ingenieria Tecnica Industrial BilbaoSan SebastianSpain

Personalised recommendations