Skip to main content
Log in

DESIGNING AND EVALUATING RESEARCH-BASED INSTRUCTIONAL SEQUENCES FOR INTRODUCING MAGNETIC FIELDS

  • Published:
International Journal of Science and Mathematics Education Aims and scope Submit manuscript

Abstract

This study examines the didactic suitability of introducing a teaching sequence when teaching the concept of magnetic fields within introductory physics courses at the university level. This instructional sequence was designed taking into account students’ common conceptions, an analysis of the course content, and the history of the development of ideas about magnetic fields. The evaluation is undertaken by comparing the results with a control group using written questionnaires and analyzing recordings of class discussion. The results show that the elements within the sequence help students to reconcile an overall description with field analysis of magnetic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arons, A. B. (1990). A guide to introductory physics teaching. New York: Wiley.

    Google Scholar 

  • Bagno, E. & Eylon, B. (1997). From problem solving to a knowledge structure: An example from the domain of electromagnetism. American Journal of Physics, 65(8), 726–736.

    Article  Google Scholar 

  • Bar, V., Zinn, B. & Rubin, E. (1997). Children’s ideas about action a distance. International Journal of Science Education, 19(10), 1137–1157.

    Article  Google Scholar 

  • Borges, A. T. & Gilbert, J. K. (1998). Models of magnetism. International Journal of Science Education, 20(3), 361–378.

    Article  Google Scholar 

  • Boud, D. & Feletti, G. (Eds.). (1991). The challenge of problem-based learning. New York: St. Martin’ Press.

  • Crocker, A. C. (1969). Statistics for the teacher or how to put figures in their places. Middlesex: Penguin Books.

    Google Scholar 

  • Duit, R. (2006). Students’ and Teachers’ Conceptions and Science Education in http://www.ipn.uni-kiel.de/aktuell/stcse/stcse.html, consulted May 2006.

  • Ericsson, K. A. & Simon, H. A. (1984). Protocol analysis: verbal reports as data. Cambridge: MIT Press.

    Google Scholar 

  • Ferguson, G. A. & Takane, Y. (1989). Statistical analysis in psychology and education. McGraw Hill. International Editions/Psychology Series.

  • Galili, I. & Kaplan, D. (1997). Changing approach to teaching electromagnetism in a conceptually oriented introductory physics course. American Journal of Physics, 65(7), 657–667.

    Article  Google Scholar 

  • Gil, D. (2003). Constructivism in science education: the need for a clear line of demarcation. In D. Psillos, P. Kariotoglou, V. Tselfes, E. Hatzikraniotis, G. Fassoulopoulos & M. Kallery (Eds.), Science education in the knowledge-based society. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Greca, I. M. & Moreira, M. A. (1998). Modelos mentales y aprendizaje de Física en electricidad y magnetismo. Enseñanza de las Ciencias, 16(2), 289–303.

    Google Scholar 

  • Jimenez-Alexaindre, M. P., Rodriguez, A. B. & Duschl, R. A. (2000). Doing the lesson or ‘doing science’: argument in high school genetics. Science Education, 84(6), 757–792.

    Article  Google Scholar 

  • Kelley, A. (2003). Theme issue: the role of design in educational research. Educational Researcher, 32(1), 3–4.

    Article  Google Scholar 

  • Leach, J. & Scott, P. (2003). Individual and sociocultural views of learning in science education. Science and Education, 12(1), 91–113.

    Article  Google Scholar 

  • Lijnse, P. & Klaassen, K. (2004). Didactical structures as an outcome of research on teaching-learning sequences? International Journal of Science Education, 26(5), 537–554.

    Article  Google Scholar 

  • Maarouf, A. & Benyamna, S. (1997). La construction des sciences physiques par les représentations et les erreurs: cas des phenomènes magnétiques. Didaskalia, 11, 103–120.

    Google Scholar 

  • Maloney, D. P., O’Kuma, T. L., Hieggelke, C. J. & Van Heuvelen, A. (2001). Surveying students’ conceptual knowledge of electricity and magnetism. Phys. Educ. Res., American Journal of Physics Suppl., 69(7), 12–23, July 2001.

    Google Scholar 

  • Meheut, M. (2004). Designing and validation two teaching-learning sequences about particle models. International Journal of Science Education, 26(5), 605–618.

    Article  Google Scholar 

  • Meheut, M. & Psillos, D. (2004). Teaching-learning sequences: aims and tools for science education research. International Journal of Science Education, 26(5), 515–535.

    Article  Google Scholar 

  • Mortimer, E. F. & Scott, P. (2000). Analysing discourse in the science classroom. In L. Millar & J. Osborne (Eds.), Improving science education: the contribution of research (pp. 126–142). Buckingham: Open University Press.

    Google Scholar 

  • Pais de Sousa, M. G. (1997). Forças e campos magnéticos. Tesis Doctoral. Universidad de Aveiro.

  • Pocovi, M. C. & Finley, L. (2002). Lines of force: Faraday’s and student’s views. Science and Education, 11(5), 459–474. Proceedings of International Conference on Undergraduate Physics Education. New York: American Institute of Physics.

    Google Scholar 

  • Savery, J. R. & Duffy, T. M. (1995). Problem-based learning: an instructional model and its constructivist framework. Educational Technology, 35, 31–36.

    Google Scholar 

  • Sears, W. S., Zemansky, M. W., Young, H. D. & Freedman, R. A. (1999). University Physics, Volume 2. Addison-Wesley. Edited in Spanish by Addison-Wesley (Mexico).

  • Tipler, P. A. (1999). Physics for Scientists and Engineers, vol. 2. W.H. Freeman and Company/ Worth Publishers. Edited in Spanish by Editorial Reverté (Barcelona).

  • Törnkvist, S., Petterson, K. A. & Tranströmer, G. (1993). Confusion by representation: on student’s comprehension of the electric field concept. American Journal of Physics, 61(4), 335–338.

    Article  Google Scholar 

  • Velazco, S. (1998). El campo electromagnético en la enseñanza y el aprendizaje de la Física, tesina pre-doctoral. Argentina: Universidad Nacional de Tucumán.

  • Wandersee, J. H., Mintzes, J. J. & Novak, J. D. (1994). Research on alternative conceptions in Science. Handbook of Research on Science Teaching and Learning. New York: McMillan Publishing Company.

  • Watts, M., Gould, G. & Alsop, S. (1997). Questions of understanding: categorising pupils’ questions in Science. School Science Review, 79, 57–63.

    Google Scholar 

  • White, R. T. & Gunstone, R. F. (1992). Probing understanding. London: Palmer Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Manuel Almudi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guisasola, J., Almudi, J.M., Ceberio, M. et al. DESIGNING AND EVALUATING RESEARCH-BASED INSTRUCTIONAL SEQUENCES FOR INTRODUCING MAGNETIC FIELDS. Int J of Sci and Math Educ 7, 699–722 (2009). https://doi.org/10.1007/s10763-008-9138-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10763-008-9138-7

Key words

Navigation