Advertisement

The growing gap between colombian education policy, official claims and classroom realities: insights from mathematics teachers' conceptions of beginning algebra and its teaching purpose

  • Cecilia Agudelo-ValderramaEmail author
Article

Abstract

Since 1994 when the General Law of Education was issued, educational authorities have been claiming that Colombia has embarked on an educational revolution [‘La revolución educativa’ (n.d.). From the Colombian Ministry of Education website: http://www.mineducacion.gov.co. Retrieved 23 Nov 2004] where schools have curricular autonomy, and are to improve the quality of education by attending to the needs of the communities they serve. Teachers are urged to engage in a continuous process of constructing the curriculum which is to be anchored in the fundamental aim of educating critical citizens. The findings of this study carried out with the participation of 13 mathematics teachers with a range of teaching experiences and from different schools in Bogotá, show a totally different picture. Instead, for the teaching of school algebra, teachers emphasised the purpose of training pupils in the manipulation of symbolic expressions, as the prerequisite knowledge for the next school mathematics level and ultimately for the External Examination. I offer explanations for the identified gap and argue for the crucial need to create conditions for change at the education systemic level and for the actual empowerment of teachers.

Key Words

mathematics teachers' attitudes beliefs conceptions possibilities and barriers of change in mathematics teaching school algebra teaching social and cultural issues 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agudelo-Valderrama, C. (1996). Improving mathematics education in Colombian schools: ‘Mathematics for all’. International Journal of Educational Development, 16(1), 15–26.Google Scholar
  2. Agudelo-Valderrama, C. (2000). Una innovación curricular que enfoca el proceso de transición entre el trabajo aritmético y el algebraico. Tunja: Universidad Pedagógica y Tecnológica de Colombia.Google Scholar
  3. Agudelo-Valderrama, C. (2001).Challenging the teaching-learning patterns in elementary algebra: A Colombian case. Paper presented at the 12th ICMI Study: The Future of the Teaching and Learning of Algebra. University of Melbourne: Australia.Google Scholar
  4. Agudelo-Valderrama, C. (2002). Promoción del pensamiento algebraico en la escuela primaria: Una propuesta que cobra sentido de acuerdo con nuestras concepciones sobre el conocimiento matemático. Aula Urbana No. 37, pp 18–19. Bogotá: Magazín IDEP.Google Scholar
  5. Agudelo-Valderrama, C. (2004). Explanations of Attitudes to Change: Colombian Mathematics Teachers’ Conceptions of their Own Teaching Practices of Beginning Algebra. Unpublished PhD thesis, Monash University, Melbourne, Australia.Google Scholar
  6. Agudelo-Valderrama, C. & Clarke, B. (2005) The challenges of mathematics teacher change in the Colombian context: The power of institutional practices. Paper presented at the 15th ICMI Study: The Education and Professional Development of Teachers of Mathematics. Águas de Lindóia. Brazil.Google Scholar
  7. Banks, J.A. (2001). Citizenship education and diversity. Journal of Teacher Education, 52(1), 1–11.CrossRefGoogle Scholar
  8. Bishop, A.J. (1988). Mathematical enculturation. Dordrecht: Kluwer Academic.Google Scholar
  9. Catelblanco, B. (Ed.) (1994). General law of education (Ley General de la Educación). Bogotá: Editorial Publicitaria.Google Scholar
  10. Cobb, P., Wood, T., Yackel, E. & McNeal, B. (1992). Characteristics of classroom mathematics traditions: An iteractional analysis. America Educational Research Journal, 29(3), 573–604.CrossRefGoogle Scholar
  11. Cooney, T.J. (2001). Considering the paradoxes, perils and purposes of conceptualizing teacher development. In F. Lin & T.J. Cooney (Eds.), Making sense of mathematics teacher education (pp. 9–31). Dordrecht: Kluwer Academic.Google Scholar
  12. Díaz, C., Solarte, E. & Arce, J. (1997). Colombia. In D.F. Robitaille (Ed.), National contexts for mathematics and science education. An encyclopaedia of the education systems participating in TIMSS (pp. 82–90). Vancouver: Pacific Educational.Google Scholar
  13. Doerr, H. (2004). Teachers' knowledge and the teaching of algebra. In K. Stacey, H. Chick & M. Kendal (Eds.), The future of the teaching and learning of algebra: The 12th ICMI study. Dordrecht: Kluwer Academic.Google Scholar
  14. Ernest, P. (1989). The knowledge, beliefs and attitudes of the mathematics teacher: A model. Journal of Education for Teaching, 15(1), 13–33.Google Scholar
  15. Ernest, P. (1991). The philosophy of mathematics education. London: Falmer.Google Scholar
  16. Freire, P. (1985). The politics of education: Culture, power and liberation. Basingstoke: MacMillan.Google Scholar
  17. Gates, P. & Vistro-Yu, C. (2003). Is mathematics for all? In A.J. Bishop, M.A. Clements, C. Keitel, J. Kilpatrick & F.K. Leung (Eds.), Second international handbook of mathematics education (pp. 31–73). Dordrecht: Kluwer Academic.Google Scholar
  18. Gómez-Campo, V. (1998). Estándares educativos (a propósito del TIMSS): Nueva política curricular y calidad de la formación de docentes en Colombia. Revista de Estudios en Educación, 1(1), 94–110.Google Scholar
  19. González, M. & Pedroza, G. (1999). Reflexiones sobre aspectos claves del algebra escolar. Revista EMA – Investigación e innovación en educación matemática, 5(1), 87–91.Google Scholar
  20. Gregg, J. (1995). The tensions and contradictions of the school mathematics tradition. Journal for Research in Mathematics Education, 26(5), 442–466.CrossRefGoogle Scholar
  21. Gutstein, E. (2003). Teaching and learning mathematics for social justice in an urban, Latino school. Journal for Research in Mathematics Education, 34(1), 37–73.CrossRefGoogle Scholar
  22. Jones, B.O. (1981). Strategies for teaching in a technologically oriented society. In Magill, S. (Ed.), Changing education in a changing society: Implications for teacher education (pp. 11–16). Australia: The Australian Association of Principals of Colleges of Teacher Education.Google Scholar
  23. Kaput, J.J. & Blanton, M. (2001). Algebrafying the elementary mathematics experience. Part I: Transforming tasks structures. In H. Chick, K. Stacey, J. Vincent & J. Vincent (Eds.), Proceedings of the 12th ICMI study: The future of the teaching and learning of algebra, vol. 1 (pp. 344–351). Melbourne: University of Melbourne.Google Scholar
  24. Kieran, C. (1992). The learning and teaching of school algebra. In D.A. Grows (Ed.), Handbook of research on mathematics teaching and learning. New York: McMillan.Google Scholar
  25. Kieran, C. (2004). Algebraic thinking in the early grades: What is it? The Mathematics Educator, 18(1), 139–151.Google Scholar
  26. Kieran, C., Boileau, A. & Garaçon, M. (1996). Introducing algebra by means of a technology-supported, functional approach. In N. Bednarz, C. Kieran & L. Lee (Eds.), Approaches to algebra: Perspectives for research and teaching (pp. 257–294). Dordrecht: Kluwer Academic.Google Scholar
  27. Kincheloe, J.L. (1993). Toward a critical politics of teacher education: Mapping the postmodern. Westport, Connecticut: Bergin & Garvey.Google Scholar
  28. Lave, J. & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge: Cambridge University Press.Google Scholar
  29. Leder, G. & Forgasz, H. (2002). Measuring mathematical beliefs and their impact on the learning of mathematics: A new approach. In G. Leder, E. Pehkonen & G. Törner (Eds.), Beliefs; a hidden variable in mathematics education? (pp. 95–114). Dordrecht: Kluwer Academic.Google Scholar
  30. Lerman, S. (1990). Alternative perspectives of the nature of mathematics and their influence on the teaching of mathematics. British Educational Research Journal, 16(1), 53–62.CrossRefGoogle Scholar
  31. Lubienski, S.T. (2003). Celebrating diversity and denying disparities: A critical assessment. Educational Researcher, 38(8), 30–38.CrossRefGoogle Scholar
  32. Manouchehri, A. (1998). Mathematics curriculum reform and teachers: What are the dilemmas? Journal of Teacher Education, 49(4), 276–286.CrossRefGoogle Scholar
  33. Mason, J.H. (1999). Incitación al Estudiante para que Use su Capacidad Natural de Expresar Generalidad: Las Secuencias de Tunja. Revista EMA, 4(3), 232–246.Google Scholar
  34. Mason, J., Graham, A., Pimm, D. & Gowar, N. (1985). Routs to algebra/roots of algebra. UK: Open University Press (Milton Keynes).Google Scholar
  35. McLeod, D.B. (1992). Research on affect in mathematics education: A reconceptualization. In D.A. Grows (Ed.), Handbook of research on mathematics teaching and learning (pp. 575–596). New York: McMillan.Google Scholar
  36. Mellin-Olsen, S. (1987). The Politics of mathematics education. Dordrecht: Kluwer Academic.Google Scholar
  37. MEN (1996). Resolución 2343: Lineamientos generales de los procesos curriculares e indicadores de logro para el ciclo básico educativo escolar. Bogotá: Ministerio de Educación Nacional.Google Scholar
  38. MEN (1998). Matemáticas – Lineamientos curriculares. Bogotá: Ministerio de Educación Nacional.Google Scholar
  39. Mockus, A. (1985). La reforma curricular y el magisterio. Educación y Cultura, 4(1), 65–68.Google Scholar
  40. NCTM (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  41. Niño, J. (1998). El proceso de acreditación universitaria. El caso de las Facultades de Educación. Bogotá: Ministerio de Educación Nacional.Google Scholar
  42. Pehkonen, E. & Furinghetti, F. (2001). Towards a common characterization of beliefs and conceptions. Proceedings of the 25th Annual Conference of the International group for the Psychology of Mathematics Education. Uthrech. The Netherlands.Google Scholar
  43. Povey, H. (2002). Promoting social justice in and through the mathematics curriculum: Exploring the connections with epistemologies of mathematics. Mathematics Education Research Journal, 14(3), 190–201.Google Scholar
  44. Raymond, A. (1997). Inconsistency between a beginning elementary school teacher's mathematics beliefs and teaching practice. Journal for Research in Mathematics Education, 28(5), 550–576.CrossRefGoogle Scholar
  45. Richardson, V. & Placier, P. (2001). Teacher change. In V. Richardson (Ed.), Handbook of research on teaching (pp. 905–947). Washington, D.C.: American Educational Research Association.Google Scholar
  46. Roberts, R.E. (2002). A study of the cognitive and affective characteristics of high and low achievers in year 10 algebra. PhD thesis, Queensland University of Technology.Google Scholar
  47. Robitaille, D. & Dirks, M. (1982). Models for the mathematics curriculum. Learning of Mathematics, 2(3), 3–19.Google Scholar
  48. Smith III, D. (1996). Efficacy and teaching mathematics by telling: A challenge for reform. Journal for Research in Mathematics Education, 27(4), 387–402.CrossRefGoogle Scholar
  49. Steen, L.A. (1999). Does everybody need to study algebra? In B. Moses (Ed.), Algebraic thinking grades K-12: Readings from NCTM's school journal and other publications (pp. 49–51). Reston, VA: NCTM.Google Scholar
  50. Sutherland, R. (1991). Some unanswered questions on the teaching and learning of algebra. Learning of Mathematics, 11(3), 40–46.Google Scholar
  51. Thompson, A. (1992). Teachers' beliefs and conceptions: A synthesis of the research. In D.A. Grows (Ed.), Handbook of research on mathematics teaching and learning (pp. 127–146). New York: McMillan.Google Scholar
  52. Woodrow, D. (2003). Mathematics, mathematics education and economic conditions. In A.J. Bishop, M.A. Clements, C. Keitel, J. Kilpatrick & F.K. Leung (Eds.), Second international handbook of mathematics education (pp. 9–30). Dordrecht: Kluwer Academic.Google Scholar
  53. Yackel, E., Cobb, P. & Wood, T. (1992). Instructional development and assessment from a socioconstructivist perspective. In G. Leder (Ed.), Assessment and learning mathematics (pp. 63–82). Melbourne, Australia: Australian Council for Educational Research.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.F. of EducationMonash UniversityMelbourneAustralia

Personalised recommendations