Advertisement

Inclusion and Diversity from Hegelylacan Point of View: Do We Desire Our Desire for Change?

  • Roberto Ribeiro BaldinoEmail author
  • Tânia Cristina B. Cabral
Article

Abstract

This paper discusses the problem of social exclusion, reported to be intrinsically connected to mathematical teaching from the perspective of Hegel's philosophy and Lacan's psychoanalysis. It provides a characterization of mathematics from a language viewpoint discusses the perennial demand for more mathematical achieving from the perspective of hysterics and obsessive symptoms and shows how desire is linked with the choice of values in assessment.

Key Words

Hegel, Lacan and Zizek inclusion and diversity language and communication mathematics education and psychoanalysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldino, R.R. (1997). Student strategies in solidarity assimilation groups. In V. Zack, J. Mousdley & C. Breen (Eds.), Developing Practice: Teacher's Inquiry and Educational Change (pp. 123–134). Geelong, Australia: Deakin University. (20/06/1997).Google Scholar
  2. Breen, C. (2000). Becoming more aware: Psychoanalytic insights concerning fear and relationship in the mathematics classroom. In T. Nakamara & M. Koyama (Eds.) Vol. 2, Proceedings of the 24th conference of the International Group for the Psychology of Mathematics Education (pp. 105–112). Hiroshima: Hiroshima University.Google Scholar
  3. Breen, C. (2004). In the Serpent's Den: Contrasting scripts relating to fear of mathematics. In M.J. Hoines & A.B. Fuglestad (Eds.) Vol. 2, Proceedings of the 28th conference of the International Group for the Psychology of Mathematics Education (pp. 167–174). Bergen: Bergen University College.Google Scholar
  4. Brown, T. (1997). Mathematics Education and Language. Dordrecht: Kluwer.Google Scholar
  5. Brown, T., Hardy, T., & Wilson, D. (1993). Mathematics on Lacan's couch. For the Learning of Mathematics, 13(1), 11–14.Google Scholar
  6. Cabral, T. (2004). Affect and cognition in pedagogical transference: A Lacanian perspective. In M. Walshaw (Ed.), Mathematics Education Within the Postmodern (pp. 141–158). Greenwich, Connecticut: Information Age.Google Scholar
  7. Cabral, T.C.B. & Baldino, R.R. (2002). Lacanian psychoanalysis and pedagogical transfer: Affect and cognition. In A.D. Cockburn, H. Nardi (Eds.), Vol. 2, Proceedings of the 26th Conference of the International Group for the Psychology of Mathematics Education (pp. 177–184). Norwich: University of East Anglia.Google Scholar
  8. Cabral, T.C.B. & Baldino, R.R. (2004). Formal inclusion and real diversity in an engineering program of a new public university. In M.J. Hoines & A.B. Fuglestad (Eds.), Vol. 2, Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education (pp. 175–182). Bergen: Bergen University College.Google Scholar
  9. Coulanges, F. (1975). A Cidade Antiga. São Paulo: Hemus. Orig. La Cité Antique, 1864, Paris.Google Scholar
  10. Dedekind, R. (1963). Theory of numbers. New York: Dover.Google Scholar
  11. Dowling, P. (1998) The sociology of mathematics education. London: Falmer.Google Scholar
  12. Ellerton, N.F. & Clarkson, P.C. (1996). Language factors in mathematics teaching and learning. In A. Bishop, et al. (Eds.), International handbook of mathematics education (pp. 985–1033). Dordrecht: Kluwer.Google Scholar
  13. Evans, J. (2000). Adults' mathematical thinking and emotions: A study of numerate practices. London: Routledge Falmer.Google Scholar
  14. Frankenstein, M. (1989). Relearning mathematics: A different third r-radical math(s). London: Free Association Books.Google Scholar
  15. Gates, P. (2004). Lives, learning and liberty. The impact and responsibilities of mathematics education. In M.J. Hoines & A.B. Fuglestad, (Eds.), Vol. 1, Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education (pp. 71–80). Bergen: Bergen University College.Google Scholar
  16. Hardy, G.H. (1992). Divergent series. Chelsea Pub. Co.Google Scholar
  17. Harré, R. (1995). But is it science? Traditional and alternative approaches to the study of social behaviour. World Psychology, 1(4), 47–78.Google Scholar
  18. Hegel, G.W.F. (1970). Encyclopédie des Sciences Philosophiques. J. Vrin: Paris.Google Scholar
  19. Hegel, G.W.F. (1998). Science of Logic. Humanity Books. Paperback edition. Translated by A.V. Miller. Originally published: London: Allen & Unwin, 1969.Google Scholar
  20. Henrich, D. (1971). Hegel im Kontext. Frankfurt: Suhrkamp Verlag.Google Scholar
  21. Jaworski, B. (2004). Grappling with complexity: Co-learning in inquiry communities in mathematics teaching development. In M.J. Hoines & A.B. Fuglestad (Eds.), Vol. 1, Proceedings of the 28th conference of the International Group for the Psychology of Mathematics Education (pp. 17–36). Bergen: Bergen University College.Google Scholar
  22. Klette, K. (2004). Classroom business as usual? (What) do researchers and policy makers learn form classroom research? In M.J. Hoines, & A.B. Fuglestad (Eds.) Vol. 1, Proceedings of the 28th conference of the International Group for the Psychology of Mathematics Education (pp. 3–16). Bergen: Bergen University College.Google Scholar
  23. Knijnik, G. (2002). Two political facets of mathematics education in the production of social exclusion. In P. Valero & O. Skovsmose (Eds.), Vol. 2, Proceedings of the Third International Mathematics Education and Society Conference (pp. 357–363). Copenhagen: Centre for Research in Learning Mathematics.Google Scholar
  24. Lacan, J. (1966). Écrits. Paris: Éditions du Seuil.Google Scholar
  25. Moses, R.P. & Cobb, C.E. Jr. (2001). Radical equations. Boston: Beacon.Google Scholar
  26. Powell, A. (2004). The diversity backlash and the mathematical agency of students of color. In M.J. Hoines, & A.B. Fuglestad (Eds.), Vol. 1, Proceedings of the 28th conference of the International Group for the Psychology of Mathematics Education (pp. 37–54). Bergen: Bergen University College.Google Scholar
  27. Powell, A.B. & Frankenstein, M. (Eds.), Ethnomathematics: Challenging Eurocentrism in Mathematics Education. New York: State University of New York, 1997.Google Scholar
  28. Restivo, S. (1992). Mathematics in society and history. Dordrecht: Kluwer.Google Scholar
  29. Skowsmose, O. (1994). Towards a philosophy of critics mathematics education. Dordrecht: Kluwer.Google Scholar
  30. Teixeira, M.V., Sad, L.A. & Baldino, R.R. (2001). Cauchy and the problem of point-wise convergence. Archives Internationales D'histoire des sciences, 51(147), 277–308.Google Scholar
  31. Walshaw, M. (2004). The pedagogical relation in postmodern times: Learning with Lacan. In M. Walshaw (Ed.), Mathematics education within the postmodern (pp. 121–139). USA: Information Age Publishing. ISBN 1-59311-130-4.Google Scholar
  32. Willis, S. (1989). Real girls don't do maths. gender and the construction of privilege. Geelong, Australia: Deakin University.Google Scholar
  33. Zaslavski, C. (1981). Mathematics education: The fraud of “Back to Basics” and the socialist counterexample. Science and Nature (4), 15–27.Google Scholar
  34. Zizek, S. (1999). The Sublime object of ideology. London: Verso.Google Scholar
  35. Zizek, S. (2002). For they know not what they do. London: Verso.Google Scholar

Copyright information

© National Science Council, Taiwan 2005

Authors and Affiliations

  • Roberto Ribeiro Baldino
    • 1
    Email author
  • Tânia Cristina B. Cabral
    • 1
  1. 1.UERGS, Engineering on Digital SystemsGuaibaBrazil

Personalised recommendations