Skip to main content
Log in

Temperature Dependence of Terahertz Properties of Stoichiometric Lithium Tantalate

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

We studied terahertz (THz) optical and dielectric properties of stoichiometric lithium tantalate (sLT) from room down to liquid nitrogen temperature in the range of 0.15–1.8 THz using terahertz time-domain spectroscopy. Two-oscillator Lorentz models were fitted well to the crystal properties for both ordinary and extraordinary waves. We also studied changes in sLT ultraviolet (UV) absorption from room to liquid nitrogen temperature. The measurements showed a significant drop in absorption in both the THz and UV ranges with cooling. According to these results cooling should increase lithium tantalate potential in optical-to-terahertz conversion of high-power 800-nm radiation. The measured properties can be used in designing nonlinear optical conversion schemes and devices based on sLT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Data can be provided on reasonable request.

References

  1. D. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, New York, 2005).

    Google Scholar 

  2. P. Hu, L. Zhang, J. Xiong, J. Yin, C. Zhao, X. He, and Y. Hang, Optical Materials 33, 1677 (2011).

    Article  Google Scholar 

  3. K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, Appl. Phys. Lett. 73, 3073 (1998).

    Article  Google Scholar 

  4. S. C. Kumar and M. Ebrahim-Zadeh, Opt. Lett. 36, 2578 (2011).

    Article  Google Scholar 

  5. D. Chuchumishev, A. Gaydardzhiev, T. Fiebig, and I. Buchvarov, Opt. Lett. 38, 3347 (2013).

    Article  Google Scholar 

  6. H. Hatano, R. Slater, S. Takekawa, M. Kusano, and M. Watanabe, Jpn. J. Appl. Phys. 56, 072701 (2017).

    Article  Google Scholar 

  7. J. D. Rowley, S. Yang, and F. Ganikhanov, J. Opt. Soc. Am. B 28, 1026 (2011).

    Article  Google Scholar 

  8. M. Stappel, D. Kolbe, and J. Walz, Opt. Lett. 39, 2951 (2014).

    Article  Google Scholar 

  9. O. A. Louchev, H. Hatano, T. Tsukihana, S. Wada, S. Takekawa, and K. Kitamura, Opt. Express 23, 4847 (2015).

    Article  Google Scholar 

  10. L. Wang, X. Zhang, L. Li, Q. Lu, C. Romero, J. R. V. de Aldana, and F. Chen, Opt. Express 27, 2101 (2019).

    Article  Google Scholar 

  11. J.-P. Meyn and M. M. Fejer, Opt. Lett. 22, 1214 (1997).

    Article  Google Scholar 

  12. P. A. Champert, S. V. Popov, J. R. Taylor, and J. P. Meyn, Opt. Lett. 25, 1252 (2000).

    Article  Google Scholar 

  13. H. Lu, J. Wei, Y. Wei, J. Su, and K. Peng, Opt. Express 24, 23726 (2016).

  14. N. E. Yu, C. Kang, H. K. Yoo, C. Jung, Y. L. Lee, C.-S. Kee, D.-K. Ko, J. Lee, K. Kitamura, and S. Takekawa, Appl. Phys. Lett. 93, 041104 (2008).

    Article  Google Scholar 

  15. N. E. Yu, K. S. Lee, D.-K. Ko, C. Kang, S. Takekawa, and K. Kitamura, Opt. Commun. 284, 1395 (2011).

    Article  Google Scholar 

  16. N. E. Yu, M.-K. Oh, H. Kang, C. Jung, B. H. Kim, K.-S. Lee, D.-K. Ko, S. Takekawa, and K. Kitamura, Appl. Phys. Express 7, 012101 (2013).

    Article  Google Scholar 

  17. R. Chen, G. Xu, G. Sun, and Y. J. Ding, J. Opt. Soc. Am. B 31, 3097 (2014).

    Article  Google Scholar 

  18. L. Tokodi, A. Buzády, J. Hebling, and L. Pálfalvi, Appl. Phys. B 122, (2016).

  19. G. o Krizsán, Z. Tibai, J. Hebling, L. Pálfalvi, G. Almási, and G. Tóth, Opt. Express 28, 34320 (2020).

  20. B. Sun, X. Bai, J. Liu, and J. Yao, Laser Phys. 24, 035402 (2014).

    Article  Google Scholar 

  21. M.-H. Wu, Y.-C. Chiu, T.-D. Wang, G. Zhao, A. Zukauskas, F. Laurell, and Y.-C. Huang, Opt. Express 24, 25964 (2016).

    Article  Google Scholar 

  22. A. Buzády, M. Unferdorben, G. Tóth, J. Hebling, I. Hajdara, L. Kovács, and L. Pálfalvi, J Infrared Milli Terahz Waves 38, 963 (2017).

    Article  Google Scholar 

  23. A. Buzády, R. Gálos, G. Makkai, X. Wu, G. Tóth, L. Kovács, G. Almási, J. Hebling, L. Pálfalvi, J. Hebling, and L. Pálfalvi, Opt. Mater. Express 10, 998 (2020).

    Article  Google Scholar 

  24. N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, Jpn. J. Appl. Phys. 43, L1265 (2004).

    Article  Google Scholar 

  25. I. Dolev, A. Ganany-Padowicz, O. Gayer, A. Arie, J. Mangin, and G. Gadret, Appl. Phys. B 96, 423 (2009).

    Article  Google Scholar 

  26. H. H. Lim, S. Kurimura, T. Katagai, and I. Shoji, Jpn. J. Appl. Phys. 52, 032601 (2013).

    Article  Google Scholar 

  27. H. Igawa, T. Mori, and S. Kojima, Japanese Journal of Applied Physics 53, 05FE01 (2014).

  28. A. S. Barker, A. A. Ballman, and J. A. Ditzenberger, Phys. Rev. B 2, 4233 (1970).

    Article  Google Scholar 

  29. B. Bittner, M. Scherm, T. Schoedl, T. Tyroller, U. T. Schwarz, and M. Maier, J. Phys.: Condens. Matter 14, 9013 (2002).

    Google Scholar 

  30. L. Shi, Y. Kong, W. Yan, H. Liu, X. Li, X. Xie, D. Zhao, L. Sun, J. Xu, J. Sun, S. Chen, L. Zhang, Z. Huang, S. Liu, W. Zhang, and G. Zhang, Solid State Communications 135, 251 (2005).

    Article  Google Scholar 

  31. K.-S. Lee, D.-K. Ko, and N. E. Yu, Jpn. J. Appl. Phys. 56, 040303 (2017).

    Article  Google Scholar 

  32. S.-W. Huang, E. Granados, W. R. Huang, K.-H. Hong, L. E. Zapata, and F. X. Kärtner, Optics Letters 38, 796 (2013).

    Article  Google Scholar 

  33. A. Mamrashev, F. Minakov, N. Nikolaev, and V. Antsygin, Photonics 8, 213 (2021).

    Article  Google Scholar 

  34. A. A. Mamrashev, N. A. Nikolaev, S. A. Kuznetsov, and A. V. Gelfand, AIP Conference Proceedings 2300, 020083 (2020).

    Article  Google Scholar 

  35. C.-R. Wang, Q.-K. Pan, F. Chen, G. Lanskii, N. Nikolaev, A. Mamrashev, Y. Andreev, and A. Meshalkin, Infrared Physics & Technology 97, 1 (2019).

    Article  Google Scholar 

  36. L. Duvillaret, F. Garet, and J.-L. Coutaz, IEEE Journal of Selected Topics in Quantum Electronics 2, 739 (1996).

    Article  Google Scholar 

  37. W. Withayachumnankul, B. M. Fischer, H. Lin, and D. Abbott, Journal of the Optical Society of America B 25, 1059 (2008).

    Article  Google Scholar 

  38. A. B. Kuzmenko, Review of Scientific Instruments 76, 083108 (2005).

    Article  Google Scholar 

  39. N. V. Surovtsev, V. K. Malinovskii, A. M. Pugachev, and A. P. Shebanin, Phys. Solid State 45, 534 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to A. V. Gorchakov and V. N. Shlegel for providing the sample of stoichiometric lithium tantalate. Spectroscopic measurements were carried out using equipment of the Shared Equipment Center “Spectroscopy and Optics” of the Institute of Automation and Electrometry SB RAS. The authors acknowledge core facilities “VTAN” (Novosibirsk State University) for providing terahertz quasi-optical devices.

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation within the state assignment of the Institute of Automation and Electrometry SB RAS (study of the optical properties of lithium tantalate) and Novosibirsk State University project No. FSUS-2020–0029 (design and testing of thin-film terahertz polarizers).

Author information

Authors and Affiliations

Authors

Contributions

V. Antsygin, A. Mamrashev, N. Nikolaev, and F. Minakov performed terahertz time-domain spectroscopy measurements; S. Mikerin, V. Antsygin, L. Maximov, and A. Mamrashev performed UV–visible spectroscopy measurements; and A. Mamrashev processed and fitted the data, prepared the figures, and wrote the original draft of the manuscript. All authors contributed to editing of the manuscript.

Corresponding author

Correspondence to A. A. Mamrashev.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antsygin, V.D., Mamrashev, A.A., Maximov, L.V. et al. Temperature Dependence of Terahertz Properties of Stoichiometric Lithium Tantalate. J Infrared Milli Terahz Waves 43, 895–904 (2022). https://doi.org/10.1007/s10762-022-00896-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-022-00896-w

Keywords

Navigation