Skip to main content
Log in

Temperature Dependence of Anisotropic Complex Conductivity of β-Ga2O3

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Anisotropic conductivity and its temperature dependence of unintentionally doped and Fe-doped bulk (010) β-Ga2O3 were studied by using terahertz time-domain spectroscopy (THz-TDS) with the THz polarization being parallel to the [100] and the [001] directions. The responses to the THz waves were different along the a-axis and the c-axis, where the Drude and the Drude-Smith model were applied for fitting the data of these two axes, respectively. This suggests that the carriers travel along the a-axis as free carriers while those are highly localized along the c-axis. The unintentionally doped sample showed a unique temperature dependence, in particular, a decreasing trend of the real part of the complex conductivity with increasing temperature. This is attributed to carriers being completely thermally excited from shallow impurity levels, and afterward, the scattering behavior has been enhanced, causing the conductivity to decrease. Conversely, the Fe-doped sample showed little temperature dependence, indicating this sample to be thermally stable. Moreover, the mobility along the a-axis in the Fe-doped sample was estimated to be much higher than that along the c-axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data of this study are available from the corresponding author upon reasonable request.

References

  1. S. J. Pearton, J. Yang, P. H. Cary, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, Applied Physics Reviews 5, (2018). https://doi.org/10.1063/1.5006941

  2. M. Baldini, Z. Galazka, and G. Wagner, Materials Science in Semiconductor Processing 78, 132 (2018). https://doi.org/10.1016/j.mssp.2017.10.040.

    Article  Google Scholar 

  3. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, Applied Physics Letters 100, (2012). https://doi.org/10.1063/1.3674287

  4. K. D. Chabak, K. D. Leedy, A. J. Green, S. Mou, A. T. Neal, T. Asel, E. R. Heller, N. S. Hendricks, K. Liddy, A. Crespo, N. C. Miller, M. T. Lindquist, N. A. Moser, R. C. Fitch, D. E. Walker, D. L. Dorsey, and G. H. Jessen, Semiconductor Science and Technology 35, (2020). https://doi.org/10.1088/1361-6641/ab55fe

  5. G. Jessen, K. Chabak, A. Green, J. McCandless, S. Tetlak, K. Leedy, R. Fitch, S. Mou, E. Heller, S. Badescu, A. Crespo, and N. Moser, in 2017 75th Annual Device Research Conference (DRC) (IEEE, 2017), pp. 1–2. https://doi.org/10.1109/DRC.2017.7999397

  6. A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, and S. Yamakoshi, in Japanese Journal of Applied Physics (Japan Society of Applied Physics, 2016). https://doi.org/10.7567/JJAP.55.1202A2

  7. Z. Wang, X. Chen, F. F. Ren, S. Gu, and J. Ye, Journal of Physics D: Applied Physics 54, (2021). https://doi.org/10.1088/1361-6463/abbeb1

  8. N. Ueda, H. Hosono, R. Waseda, and H. Kawazoe, Applied Physics Letters 71, 933 (1997). https://doi.org/10.1063/1.119693.

    Article  Google Scholar 

  9. H. Jiang, C. Gong, T. Nishimura, H. Murakami, I. Kawayama, H. Nakanishi, and M. Tonouchi, Photonics 7, (2020). https://doi.org/10.3390/PHOTONICS7030073

  10. J. Neu and C. A. Schmuttenmaer, Journal of Applied Physics 124, (2018). https://doi.org/10.1063/1.5047659

  11. N. Kida, M. Hangyo, and M. Tonouchi, Physical Review B - Condensed Matter and Materials Physics 62, 965 (2000). https://doi.org/10.1103/PhysRevB.62.R11965.

    Article  Google Scholar 

  12. P. R. Whelan, Q. Shen, D. Luo, M. Wang, R. S. Ruoff, P. U. Jepsen, P. Bøggild, and B. Zhou, Optics Express 28, 28819 (2020). https://doi.org/10.1364/oe.402447.

    Article  Google Scholar 

  13. W. Nsengiyumva, S. Zhong, B. Wang, L. Zheng, Z. Zhang, Q. Zhang, J. Zhong, M. Luo, and Z. Peng, Opt Mater (Amst) 123, (2022). https://doi.org/10.1016/j.optmat.2021.111837

  14. P. R. Whelan, X. Zhao, I. Pasternak, W. Strupinski, P. U. Jepsen, and P. Bøggild, Microelectronic Engineering 212, 9 (2019). https://doi.org/10.1016/j.mee.2019.03.022.

    Article  Google Scholar 

  15. V. C. Agulto, K. Toya, T. N. K. Phan, V. K. Mag-Usara, J. Li, M. J. F. Empizo, T. Iwamoto, K. Goto, H. Murakami, Y. Kumagai, N. Sarukura, M. Yoshimura, and M. Nakajima, Applied Physics Letters 118, 8 (2021). https://doi.org/10.1063/5.0031531.

    Article  Google Scholar 

  16. P. U. Jepsen, U. Møller, and H. Merbold, Investigation of Aqueous Alcohol and Sugar Solutions with Reflection Terahertz Time-Domain Spectroscopy (2007)

  17. T.-R. Tsai, S.-J. Chen, C.-F. Chang, S.-H. Hsu, T.-Y. Lin, and C.-C. Chi, Optics Express 14, 4898 (2006). https://doi.org/10.1364/OE.14.004898.

    Article  Google Scholar 

  18. M. van Exter and D. Grischkowsky, Physical Review B 41, 12140 (1990). https://doi.org/10.1103/PhysRevB.41.12140.

    Article  Google Scholar 

  19. T. L. Cocker, D. Baillie, M. Buruma, L. v. Titova, R. D. Sydora, F. Marsiglio, and F. A. Hegmann, Physical Review B 96, (2017). https://doi.org/10.1103/PhysRevB.96.205439

  20. N. Blumenschein, C. Kadlec, O. Romanyuk, T. Paskova, J. F. Muth, and F. Kadlec, Journal of Applied Physics 127, (2020). https://doi.org/10.1063/1.5143735

  21. P. Gopalan, S. Knight, A. Chanana, M. Stokey, P. Ranga, M. A. Scarpulla, S. Krishnamoorthy, V. Darakchieva, Z. Galazka, K. Irmscher, A. Fiedler, S. Blair, M. Schubert, and B. Sensale-Rodriguez, Applied Physics Letters 117, 252103 (2020). https://doi.org/10.1063/5.0031464.

    Article  Google Scholar 

  22. L. Duvillaret, F. Garet, and J. L. Coutaz, IEEE Journal on Selected Topics in Quantum Electronics 2, 739 (1996). https://doi.org/10.1109/2944.571775.

    Article  Google Scholar 

  23. L. Duvillaret, F. Garet, and J.-L. Coutaz, Applied Optics 38, 409 (1999). https://doi.org/10.1364/ao.38.000409.

    Article  Google Scholar 

  24. E. G. Víllora, K. Shimamura, T. Ujiie, and K. Aoki, Applied Physics Letters 92, 9 (2008). https://doi.org/10.1063/1.2910770.

    Article  Google Scholar 

  25. H. Jiang, K. Wang, H. Murakami, and M. Tonouchi, Photonics 9, 233 (2022). https://doi.org/10.3390/photonics9040233.

    Article  Google Scholar 

  26. S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, Journal of Applied Physics 90, 837 (2001). https://doi.org/10.1063/1.1376673.

    Article  Google Scholar 

  27. F. Ricci, F. Boschi, A. Baraldi, A. Filippetti, M. Higashiwaki, A. Kuramata, V. Fiorentini, and R. Fornari, Journal of Physics Condensed Matter 28, 224005 (2016). https://doi.org/10.1088/0953-8984/28/22/224005.

    Article  Google Scholar 

  28. H. Lu and X. Meng, Scientific Reports 5, 1 (2015). https://doi.org/10.1038/srep11263.

    Article  Google Scholar 

  29. T. Onuma, S. Saito, K. Sasaki, K. Goto, T. Masui, T. Yamaguchi, T. Honda, A. Kuramata, and M. Higashiwaki, Applied Physics Letters 108, (2016). https://doi.org/10.1063/1.4943175

  30. S. Rafique, L. Han, S. Mou, and H. Zhao, Optical Materials Express 7, 3561 (2017). https://doi.org/10.1364/ome.7.003561.

    Article  Google Scholar 

  31. K. Wang, Z. Xiao, R. Guo, G. Jia, Y. Zhang, H. Wang, Y. Wu, and Y. Tian, Materials Today Communications 29, 102764 (2021). https://doi.org/10.1016/j.mtcomm.2021.102764.

    Article  Google Scholar 

  32. A. Mock, J. Vanderslice, R. Korlacki, J. A. Woollam, and M. Schubert, Applied Physics Letters 112, 2 (2018). https://doi.org/10.1063/1.5010936.

    Article  Google Scholar 

  33. I. Bhaumik, R. Bhatt, S. Ganesamoorthy, A. Saxena, A. K. Karnal, P. K. Gupta, A. K. Sinha, and S. K. Deb, Applied Optics 50, 6006 (2011). https://doi.org/10.1364/AO.50.006006.

    Article  Google Scholar 

  34. M. Mohamed, C. Janowitz, I. Unger, R. Manzke, Z. Galazka, R. Uecker, R. Fornari, J. R. Weber, J. B. Varley, and C. G. van de Walle, Applied Physics Letters 97, 2 (2010). https://doi.org/10.1063/1.3521255.

    Article  Google Scholar 

  35. H. Peelaers and C. G. van de Walle, Physica Status Solidi (B) Basic Research 252, 828 (2015). https://doi.org/10.1002/pssb.201451551

  36. C. I. Bright, Optical Thin Films and Coatings: From Materials to Applications 4166, 741 (2018). https://doi.org/10.1016/B978-0-08-102073-9.00021-7.

    Article  Google Scholar 

  37. T. Oishi, K. Harada, Y. Koga, and M. Kasu, Japanese Journal of Applied Physics 55, 0 (2016).https://doi.org/10.7567/JJAP.55.030305

  38. K. Irmscher, Z. Galazka, M. Pietsch, R. Uecker, and R. Fornari, Journal of Applied Physics 110, (2011). https://doi.org/10.1063/1.3642962

  39. A. Parisini and R. Fornari, Semiconductor Science and Technology 31, 0 (2016).https://doi.org/10.1088/0268-1242/31/3/035023

  40. T. Oishi, Y. Koga, K. Harada, and M. Kasu, Applied Physics Express 8, 198 (2015). https://doi.org/10.7567/APEX.8.031101.

    Article  Google Scholar 

  41. N. Ma, N. Tanen, A. Verma, Z. Guo, T. Luo, H. (Grace) Xing, and D. Jena, Applied Physics Letters 109, 1 (2016). https://doi.org/10.1063/1.4968550

  42. A. T. Neal, S. Mou, R. Lopez, J. v. Li, D. B. Thomson, K. D. Chabak, and G. H. Jessen, Scientific Reports 7, 1 (2017). https://doi.org/10.1038/s41598-017-13656-x

  43. N. T. Son, K. Goto, K. Nomura, Q. T. Thieu, R. Togashi, H. Murakami, Y. Kumagai, A. Kuramata, M. Higashiwaki, A. Koukitu, S. Yamakoshi, B. Monemar, and E. Janzén, Journal of Applied Physics 120, (2016). https://doi.org/10.1063/1.4972040

  44. M. Higashiwaki, A. Kuramata, H. Murakami, and Y. Kumagai, Journal of Physics D: Applied Physics 50, (2017). https://doi.org/10.1088/1361-6463/aa7aff

  45. N. Moser, J. McCandless, A. Crespo, K. Leedy, A. Green, A. Neal, S. Mou, E. Ahmadi, J. Speck, K. Chabak, N. Peixoto, and G. Jessen, IEEE Electron Device Letters 38, 775 (2017). https://doi.org/10.1109/LED.2017.2697359.

    Article  Google Scholar 

  46. P. Grivickas, Optical studies of carrier transport and fundamental absorption in 4H-SiC and Si (2004)

  47. K. Ghosh and U. Singisetti, Applied Physics Letters 109, (2016). https://doi.org/10.1063/1.4961308

  48. J. Y. Tsao, S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar, S. Rajan, C. G. van de Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, S. Graham, T. A. Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam, P. W. Juodawlkis, M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, R. J. Nemanich, R. C. N. Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski, M. Wraback, and J. A. Simmons, Advanced Electronic Materials 4, (2018). https://doi.org/10.1002/aelm.201600501

  49. W. S. Hwang, A. Verma, H. Peelaers, V. Protasenko, S. Rouvimov, H. Xing, A. Seabaugh, W. Haensch, C. van de Walle, Z. Galazka, M. Albrecht, R. Fornari, and D. Jena, Applied Physics Letters 104, 3 (2014). https://doi.org/10.1063/1.4879800.

    Article  Google Scholar 

  50. Z. Galazka, R. Uecker, K. Irmscher, M. Albrecht, D. Klimm, M. Pietsch, M. Brützam, R. Bertram, S. Ganschow, and R. Fornari, Crystal Research and Technology 45, 1229 (2010). https://doi.org/10.1002/crat.201000341.

    Article  Google Scholar 

  51. S. Rafique, L. Han, A. T. Neal, S. Mou, J. Boeckl, and H. Zhao, Physica Status Solidi (A) Applications and Materials Science 215, 1 (2018). https://doi.org/10.1002/pssa.201700467

Download references

Acknowledgements

K.W. acknowledges the support by Program for Leading Graduate Schools: “Interactive Materials Science Cadet Program” and Osaka University Fellowship: “Super Hierarchical Materials Science Program.”

Author information

Authors and Affiliations

Authors

Contributions

K.W. and M.T. conceptualized the work. K.W. carried out the experiments. All authors discussed the results. K.W. and M.T analyzed data and wrote the paper. K.S., H.M. and M.T. commented on the manuscript.

Corresponding author

Correspondence to Masayoshi Tonouchi.

Ethics declarations

Consent to Participate

The authors consent to participate.

Consent for Publication

The authors consent to publish.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Serita, K., Murakami, H. et al. Temperature Dependence of Anisotropic Complex Conductivity of β-Ga2O3. J Infrared Milli Terahz Waves 43, 612–627 (2022). https://doi.org/10.1007/s10762-022-00868-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-022-00868-0

Keywords

Navigation