Skip to main content
Log in

A 220 GHz High-Efficiency Doubler Based on Function-Based Harmonic Impedance Optimization Method

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

In this paper, a new terahertz solid-state frequency doubler design method named function-based harmonic impedance optimization method (FHIOM) is reported to improve the simulation iteration speed and accuracy of terahertz solid-state circuit design. Obtaining the matching impedance of the diode part in the optimal operating condition and realizing this impedance through the input-output matching structure are the two main steps in the design of the terahertz doubler. In this design method, harmonic impedance optimization and function-based impedance optimization are applied to quickly obtain the best input and output embedded impedance of the broadband frequency doubler device, which reduces the blindness of tentative optimization. This method innovatively estimates the impedance of the matching structure through the formula, which strengthens the connection between impedance optimization and matching structure realization. Based on the function-based harmonic impedance optimization method, a 220 GHz doubler is designed, processed, and measured. Measured results show that the doubler exhibits a bandwidth from 212 GHz to 230 GHz, with a conversion efficiency of above 15.0% a mean output power of 9.12 mW when supplied with up to 32 mW of input power. A 16 mW peak output power with a 16.4% efficiency was measured at 228 GHz when the input power was 97.55 mW. The frequency doubler design method presented in this work has the advantages of high efficiency and accuracy, which makes it very attractive for practical broadband terahertz applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Chattopadhyay.G,“Technology, Capabilities, and Performance of Low Power Terahertz Sources”,IEEE Transactions on Terahertz Science and Technology, 1 (1), 33-53 (2011).

  2. Mehdi.I, Siles.J.V, Lee.C, Schlecht.E, “THz Diode Technology: Status, Prospects, and Applications”. Proceedings of the IEEE , 105 (6), 990-1007 (2017).

  3. Hirata.A, Kosugi.T, Takahashi.H, Takeuchi.J, Togo.H, et al, “120-GHz-Band Wireless Link Technologies for Outdoor 10-Gbit/s Data Transmission”. IEEE Transactions on Microwave Theory & Techniques, 60 (3), 881-895 (2012).

  4. Ducournau.G, Szriftgiser.P, Beck.A, Bacquet.D, Pavanello.F, et al,“Ultrawide-Bandwidth Single-Channel 0.4-THz Wireless Link Combining Broadband Quasi-Optic Photomixer and Coherent Detection”. IEEE Transactions on Terahertz Science & Technology, 4 (3), 328-337 (2014).

  5. Li.C.H, Ko.C.L, Kuo.M.C, Chang.D.C, “A 340-GHz Heterodyne Receiver Front End in 40-nm CMOS for THz Biomedical Imaging Applications”. IEEE Transactions on Terahertz Science and Technology, 6 (4), 625-636 (2016).

  6. Paoloni.C, Carlo.A.D, Brunetti.F, Mineo,M, Gohier.A, “Design and Fabrication of a 1 THz Backward Wave Amplifier”. Terahertz Science and Technology, 4, 149-163 (2011).

  7. Samoska.L.A, “An Overview of Solid-State Integrated Circuit Amplifiers in the Submillimeter-Wave and THz Regime”. IEEE Transactions on Terahertz Science and Technology, 1 (1), 9-24 (2011).

  8. Meng.J, Qi.L, Liu.X, Zhou.J, Zhang.D, et al, “The Design of Terahertz Monolithic Integrated Frequency Multipliers Based on Gallium Arsenide Material””. Micromachines, 11 (3), 336 (2020).

  9. Liang.S, Song.X, Zhang.L, Lv.Y, Wang.Y, et al, “A 177-183 GHz High-Power GaN-Based Frequency Doubler With Over 200 mW Output Power”. IEEE Electron Device Letters, 41 (5), 669-672 (2020).

  10. Zhang.B, Zhang.Y, Pan.L, Li.Y, Cui.J, et al, “A 560 GHz Sub-Harmonic Mixer Using Half-Global Design Method”, Electronics, 10 (3), 234 (2021).

  11. Cui.J, Zhang.Y, Xia.D, Xu.Y, Xiao.F, et al, A 220 GHz “Brlooadband Sub-harmonic Mixer Based on Global Design Method”, IEEE Access, 1-1,30067-30077 (2019).

  12. Bulcha.B.T, Hesler.J.L, Drakinskiy.V, Stake.J, Valavanis.A, et al, “Design and Characterization of 1.8-3.2 THz Schottky-Based Harmonic Mixers” IEEE Transactions on Terahertz Science and Technology, 6 (5), 737-746 (2016).

  13. Alibakhshikenari.M, Virdee.B.S, Althuway B.A.A, Assa.S, Chan. H.S, et al, “Study on on-Chip Antenna Design Based on Metamaterial-Inspired and Substrate-Integrated Waveguide Properties for Millimetre-Wave and THz Integrated-Circuit Applications”, Journal of Infrared, Millimeter, and Terahertz Waves, 1-12 (2020).

  14. Alibakhshikenari.M, Virdee.B.S, Chan.H.S, Shukla.P, Limiti.E, “Study on improvement of the performance parameters of a novel 0.41-0.47 THz on-chip antenna based on metasurface concept realized on 50 um GaAs-layer”, Scientific Reports, 10 (1), 11034 (2020).

  15. Alibakhshikenari.M, Virdee.B.S, Khalily.M, Chan.H.S, Limiti.E, “High-Gain On-Chip Antenna Design on Silicon Layer with Aperture Excitation for Terahertz Applications”, IEEE Antennas and Wireless Propagation Letters, PP (99) (2020).

  16. Chattopadhyay.G, Schlecht.E, Ward.J.S, Gill.J.J, Javadi.H.H.S, et al, “An all-solid-state broad-band frequency multiplier chain at 1500 GHz”, Microwave Theory & Techniques IEEE Transactions on, 52 (5), 1538-1547 (2004).

  17. Mehdi.I, Holland.W.S, Zmuidzinas.J, Thomas.B, Lin.R, et al, “High power local oscillator sources for 1-2 THz”, International Society for Optics and Photonics, 7741, 774112 (2010).

  18. Yao.C, Wei.X, Luo.Y, Zhou.M, “A 210GHz Power-Combined Frequency Multiplying Source with Output Power of 23.8 mW”, Frequenz -Berlin-, 71 (11-12), 523-530 (2017).

  19. Hesler.J.L, Hall.W.R, “Fixed-Tuned Submillimeter Wavelength Waveguide Mixers Using Planar Schottky-Barrier Diodes”, IEEE Transactions on Microwave Theory & Techniques Mtt, 45 (5), 653-658 (1997).

  20. Siles, José.V, Grajal.Jesús, “Physics-Based Design and Optimization of Schottky Diode Frequency Multipliers for Terahertz Applications”, IEEE Transactions on Microwave Theory & Techniques. (2010).

  21. Tang.A.Y, Schlecht.E, Lin.R, Chattopadhyay.G, Lee.C, et al, “Electro-Thermal Model for Multi-Anode Schottky Diode Multipliers”, IEEE Transactions on Terahertz Science and Technology, 2 (3), 290-298 (2012).

  22. Tang, A.Y..Stake, J.; Impact of Eddy Currents and Crowding Effects on High-Frequency Losses in Planar Schottky Diodes. IEEE Transactions on Electron Devices. 2011, 58 (10), 3260-3269.

    Article  Google Scholar 

  23. Ding.J, Maestrini.A, Gatilova.L, Cavanna.A, Shi.S, et al, “High Efficiency and Wideband 300GHz Frequency Doubler Based on Six Schottky Diodes”, Journal of Infrared, Millimeter, and Terahertz Waves, 38 (11), 1331-1341 (2017).

  24. Siles.J.V, Maestrini.A, Alderman.B, Davies.S, Wang.H, et al, “A Single-Waveguide In-Phase Power-Combined Frequency Doubler at 190 GHz”, IEEE Microwave & Wireless Components Letters, 21 (6), 332-334 (2011).

  25. Liu.H, Powell.J, Viegas.C, Perez-Moreno.C.G, Alderman.B, “In A 40 to 160 GHz high power multiplier chain using planar Schottky diodes”, 2015 8th UK, Europe, China Millimeter Waves and THz Technology Workshop (UCMMT), (2015).

  26. Chen.Z, Wang.H, Alderman.B, Huggard.P, Zhang.B, et al, “190 GHz high power input frequency doubler based on Schottky diodes and AlN substrate” Ieice Electronics Express, 13 (22) (2016).

  27. Zhang.B, Ji.D, Fang.D, Liang.S, Fan.Y, et al, “A Novel 220-GHz GaN Diode On-Chip Tripler With High Driven Power”, IEEE Electron Device Letters, 40 (5), 780-783 (2019).

  28. Wu.C, Zhang.Y, Cui.J,; Li.Y, Xu.Y, et al, “A 135-190 GHz Broadband Self-Biased Frequency Doubler using Four-Anode Schottky Diodes”, Micromachines (Basel), 10 (4) (2019).

  29. Chen.Z, Xu.J, “Design of a W-band Frequency Tripler for Broadband Operation Based on a Modified Equivalent Circuit Model of GaAs Schottky Varistor Diode”, Journal of Infrared, Millimeter, and Terahertz Waves, 34 (1), 28-41 (2012).

  30. Yang.F, “Discrete schottky diodes based terahertz frequency doubler for planetary science and remote sensing”, Microwave and Optical Technology Letters, 59 (4), 966-970 (2017).

  31. Liu.G, Li.J, Hui.X, Zhang.X, Yu.H, “In Design of a 220GHz subharmonic mixer based on plannar schottky diode”, 2017 IEEE Asia Pacific Microwave Conference (APMC), (2017).

  32. Mehdi.I, Marazita.S.M, “Improved 240-GHz subharmonically pumped planar Schottky diode mixers for space-borne applications”, IEEE Transactions on Microwave Theory & Techniques, 46 (12), 2036-2042 (1998).

  33. Cui.J, Zhang.Y, Xu.Y, Ye.L, Xu.R, “A 200-240 GHz Sub-Harmonic Mixer Based on Half-Subdivision and Half-Global Design Method”. IEEE Access, PP (99), 1-1 (2020).

  34. Meng.J, Zhang.D,Jiang.C, Zhao.X, Huang.J, et al, “Crucial problems in the design of a terahertz tripler”, Journal of Semiconductors, 36 (8), 085003 (2015).

  35. Siles, J.V..Grajal, J.; Physics-Based Design and Optimization of Schottky Diode Frequency Multipliers for Terahertz Applications. IEEE Transactions on Microwave Theory and Techniques. 2010, 58 (7), 1933-1942.

    Article  Google Scholar 

  36. Hesler.J.L, “Planar Schottky diodes in submillimeter-wavelength waveguide receivers”, Ph.D. dissertation. University of Virginia, Charlottesville, VA, USA. (1996).

  37. Song..J, Nagatsuma.T, “Handbook of Terahertz Technologies: Devices and Applications”, Kangogaku Zasshi, 101-131 (2015).

  38. Deng.J, Yang.Y, Zhu.Z, Luo.X, “A 140-220-GHz Balanced Doubler With 8.7%-12.7% Efficiency”, IEEE Microwave and Wireless Components Letters, PP (99), 1-3 (2018).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhang, Y., Wu, C. et al. A 220 GHz High-Efficiency Doubler Based on Function-Based Harmonic Impedance Optimization Method. J Infrared Milli Terahz Waves 43, 225–243 (2022). https://doi.org/10.1007/s10762-022-00842-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-022-00842-w

Keywords

Navigation