Skip to main content

Advertisement

Log in

Tapering Vertical Dimension Technique for the Quasi-periodic Folded-Waveguide TWT to Improve the Bandwidth and Efficiency

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

A tapering vertical dimension technique (TVDT) is proposed for the quasi-periodic folded-waveguide traveling wave tube (FW-TWT) to improve the bandwidth and efficiency. The dispersion characteristics for the concentric arc FW-TWT with the TVDT are analyzed and discussed. When the power of input signal is set as 1 W and the initial beam voltage (current) is set as 4900 V (0.15 A), the peak output power of the proposed FW-TWT with the TVDT can reach 100.9 W at 88 GHz. Accordingly, the corresponding peak electron efficiency is 13.7%. Furthermore, the 3-dB bandwidth (fractional bandwidth) can reach 17 GHz (18.78%) from 82 to 99 GHz, where the output signal is steady and the corresponding frequency spectrum is quite clean. In addition, the performance of the concentric arc FW-TWT with the TVDT is also compared with that of the other quasi-periodic FW-TWTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. N. Bai, W. Xiang, J. Shen, C. Shen, and X. Sun, IEEE Trans. Electron Devices, 67(3), 1248-1253 (2020) https://doi.org/10.1109/TED.2020.2967421.

    Article  Google Scholar 

  2. Y. Hu, J. Feng, J. Cai, X. Wu, Y. Du, J. Liu, J. Chen, and X. Zhang, IEEE Trans. Plasma Sci., 42(10), 3380-3386 (2014) https://doi.org/10.1109/TPS.2014.2350477.

    Article  Google Scholar 

  3. F. Li, L. Xiao, T. Ma, Y. Sun, J. Zhao, J. Wang, C. Gao, L. Cao, and M. Huang, J. Infrared Millim. THz Waves, 41(10), 1252-1266 (2020) https://doi.org/10.1007/s10762-020-00732-z.

    Article  Google Scholar 

  4. Y. Du, J. Cai, P. Pan, R. Dong, X. Zhang, S. Liu, X. Wu, and J. Feng, IEEE Trans. Plasma Sci., 47(1), 219-225 (2019) https://doi.org/10.1109/TPS.2018.2880792.

    Article  Google Scholar 

  5. J. He, Y. Wei, Y. Gong, W. Wang, and G. –S. Park, IEEE Trans. Plasma Sci., 39(8), 1660-1664 (2011) https://doi.org/10.1109/TPS.2011.2157176.

    Article  Google Scholar 

  6. Y. Wei, G. Guo, Y. Gong, L. Yue, G. Zhao, L. Zhang, C. Ding, T. Tang, M. Huang, W. Wang, Z. Gao, and X. Li, IEEE Electron Device Lett., 35(10), 1058-1060 (2014) https://doi.org/10.1109/LED.2014.2344672.

    Article  Google Scholar 

  7. G. Guo, W. Wei, L. Yue, Y. Gong, X. Xu, J. He, G. Zhao, W. Wang, and G. Park, J. Infrared Millim. THz Waves, 33(2), 131–140. (2012) https://doi.org/10.1007/s10762-011-9852-z.

  8. F. Li, L. Xiao, J. Zhao, T. Ma, Y. Sun, J. Wang, C. Cao, L. Cao, and M. Huang, IEEE Trans. Plasma Sci., 48(8) 2939-2947 (2020) https://doi.org/10.1109/TPS.2020.3010423.

    Article  Google Scholar 

  9. A. Srivastava, V. L. Christie, J. Electromagn. Waves Applica., 32(10), 1316-1327 (2018) https://doi.org/10.1080/09205071.2018.1435309.

    Article  Google Scholar 

  10. J. Feng, J. Cai, Y. Hu, X. Wu, Y. Du, J. Liu, P. Pan, and H. Li, IEEE Trans. Electron Devices, 61(6), 1721-1725 (2014) https://doi.org/10.1109/TED.2014.2307476.

    Article  Google Scholar 

  11. X. Zhang, J. Feng, J. Cai, X. Wu, Y. Du, J. Chen, S. Li, and W. Meng, IEEE Trans. Electron Devices, 64(12), 5151-5156 (2017) https://doi.org/10.1109/TED.2017.2766664.

    Article  Google Scholar 

  12. J. Cai, J. Feng, Y. Hu, X. Wu. Y. Du, and J. Liu, IEEE Microwave and Wireless Components Letters, 24(9), 620–621 (2014) https://doi.org/10.1109/LMWC.2014.2328891.

  13. M. Liao, Y. Wei, H. Wang, J. Xu, Y. Liu, Y. Gong, W. Wang, and G.-S. Park, IEEE Trans. Plasma Sci., 43(12), 4088-4091 (2015). https://doi.org/10.1109/TPS.2015.2490119.

    Article  Google Scholar 

  14. G. Guo, Y. Wei, L. Yue. Y. Gong, G. Zhao, M. Huang, T. Tang, and W. Wang, Phys. Plasmas, 19(8), 093117, (2012) https://doi.org/10.1063/1.4752742.

  15. R. K. Sharma, A. Grede, S. Chaudhary, V. Srivastava, and H. Henke, IEEE Trans. Plasma Sci., 42 (10), 3430-3436 (2014) https://doi.org/10.1109/TPS.2014.2352267.

    Article  Google Scholar 

  16. Z. Lu, W. Ge, R. Wen, Z. Su, Z. Wang, T. Tang, H. Gong, and Y. Gong, Phys. Plasmas, 26(5), 053106 (2019) https://doi.org/10.1063/1.5088385.

  17. M. Sumathy, S. Datta, J. Infrared Millim. THz Waves, 38(5), 538-547 (2017) https://doi.org/10.1007/s10762-016-0349-7.

    Article  Google Scholar 

  18. Y. Tian, L. Yue, J. Xu, W. Wang, Y. Wei, Y. Gong, and J. Feng, IEEE Trans. Electron Devices, 59(2), 510-515 (2012) https://doi.org/10.1109/TED.2011.2175929.

    Article  Google Scholar 

  19. Y. Tian, L. Yue, Q. Zhou, Y. Wei, Y. Wei, and Y. Gong, IEEE Trans. Plasma Sci., 44(8), 1363-1368 (2016) https://doi.org/10.1109/TPS.2016.2582505.

    Article  Google Scholar 

  20. P. Pan, Y. Tang, X. Bian, L. Zhang, Q. Lu, Y. Li, Y. Feng, and J. Feng, IEEE Electron Device Lett., 41(12), pp. 1833-1836 (2020) https://doi.org/10.1109/LED.2020.3032562.

    Article  Google Scholar 

  21. X. Bian, P. Pan, Y. Tang, Q. Lu, Y. Li, L. Zhang, X. Wu, J. Cai, and J. Feng, IEEE Electron Device Lett., 42(2), pp. 248-251 (2021) https://doi.org/10.1109/LED.2020.3044450.

    Article  Google Scholar 

  22. F. Andre, J.-C. Racamier, R. Zimmerman, Q. T. Le, V. Krozer, G. Ulisse, D. F. G. Minenna, R. Letizia, and C. Paoloni, IEEE Trans. Electron Devices, 67(7), pp. 2919-2924 (2020) https://doi.org/10.1109/TED.2020.2993243.

    Article  Google Scholar 

  23. A. M. Cook, E. L. Wright, K. T. Nguyen, C. D. Joye, J. C. Rodgers, R. L. Jaynes, I. A. Chernyavskiy, F. N. Wood, B. S. Albright, Jr. B. Levush, D. E. Pershing, J. Atkison, and T. Kimura, IEEE Trans. Electron Devices, 68(5), pp. 2492–2498(2021) https://doi.org/10.1109/TED.2021.3068926

  24. D. Xu, S. Wang, Z. Wang, W. Shao, T. He, H. Wang, T. Tang, H. Gong, Z. Lu, Z. Duan, J. Feng, and Y. Gong, IEEE Electron Device Lett., 41(8), 1237-1240 (2020) https://doi.org/10.1109/LED.2020.3000759.

    Article  Google Scholar 

  25. H. Wang, S. Wang, Z. Wang, X. Li, D. Xu, T. He, T. Tang, H. Gong, Z. Lu, Z. Duan, S. Aditya, and Y. Gong, AIP Advances, 10(3), 035030 (2020) https://doi.org/10.1063/1.5145346.

    Article  Google Scholar 

  26. H. Wang, D. Xu, Z. Wang, X. Li, T. He, R. Yang, L. Yue, T. Tang, Z. Duan, Y. Wei, Y. Gong, and J. Feng, Proc. IEEE Int. Vac. Electron. Conf., (2018). https://doi.org/10.1109/IVEC.2018.8391572.

    Article  Google Scholar 

  27. E. Tahanian, and G. Dadashzadeh, IEEE Trans. Plasma Sci., 45(2), 223-228 (2017) https://doi.org/10.1109/TPS.2016.2640947.

    Article  Google Scholar 

  28. H. Wang, D. Xu, X. Li, T. He, Z. Wang, R. Yang, T. Tang, Z. Duan, H. Gong, Y. Wei, and Y. Gong, IRMMW-THz, Paris, (2019) https://doi.org/10.1109/IRMMW-THz.2019.8874034.

    Article  Google Scholar 

  29. S. Wang, Y. Gong, Z. Wang, Y. Wei, Z. Duan, and J. Feng, IEEE Trans. Plasma Sci., 41(9), 1787-1793 (2016). https://doi.org/10.1109/TPS.2016.2598614.

    Article  Google Scholar 

  30. Z. Wen, J. Luo, Y. Li, W. Guo and M. Zhu, IEEE Trans. Electron Devices, vol. 68, no 3, pp. 1262–1266. https://doi.org/10.1109/TED.2020.3047592.

  31. V. A. Solntzev, Radiotekhnika I Elektronika, 39(4), 552-558 (1994).

    Google Scholar 

  32. J. H. Booske, M. C. Converse, C. L. Kory, C. T. Chevalier, D. A. Gallagher, K. E. Kreischer, V. O. Heinen, and S. Bhattacharjee, IEEE Trans. Electron Devices, 52(5), 685–694 (2005) https://doi.org/10.1109/TED.2005.845798.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Wen.

Ethics declarations

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Z., Luo, J., Li, Y. et al. Tapering Vertical Dimension Technique for the Quasi-periodic Folded-Waveguide TWT to Improve the Bandwidth and Efficiency. J Infrared Milli Terahz Waves 42, 915–928 (2021). https://doi.org/10.1007/s10762-021-00817-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-021-00817-3

Keywords

Navigation