Skip to main content
Log in

Large Power Increase Enabled by High-Q Diamond-Loaded Cavities for Terahertz Gyrotrons

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

A new operation scheme is proposed to enable large increase in output power of terahertz gyrotrons. In this scheme, the gyrotron operates in weakly attenuated dielectric modes supported by a conventional metal cavity, which is loaded with a coaxial rod made of ultralow-loss CVD diamond. Along with high ohmic Q values, these modes are shown to possess rather strong beam-wave coupling, which ensures high interaction efficiency. As an example, the CVD diamond loading is applied to the cavity of the 527-GHz gyrotron developed at the Massachusetts Institute of Technology (MIT). The output power of this gyrotron operated in the high-Q dielectric mode is found to reach 140 W, compared to 15 W for the conventional-cavity tube. Using the coupled-mode approach, a new design is presented for a high-Q diamond-loaded cavity of the 527-GHz gyrotron. The designed cavity is shown to provide a high-purity transformation of the operating dielectric mode to the outgoing mode of the hollow exit waveguide. The output mode can be extracted from the gyrotron using a standard output system and attains a peak power of 171 W, which is more than 11 times higher than that of the 527-GHz gyrotron with a conventional cavity. The robustness of gyrotron performance against errors in manufacturing of the diamond-loaded cavity is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data are available from the authors upon reasonable request.

References

  1. R. J. Temkin, Int. J. Terahertz Sci. Technol, 2014. https://doi.org/10.11906/TST.001-009.2014.03.01.

    Article  Google Scholar 

  2. M. Y. Glyavin, T. Idehara, S. P. Sabchevski, IEEE Trans. Terahertz Sci. Technol., 2015. https://doi.org/10.1109/TTHZ.2015.2442836.

    Article  Google Scholar 

  3. M. Blank, P. Borchard, S. Cauffman, K. Felch, M. Rosay, L. Tometich, Int. J. Terahertz Sci. Technol., 2016. https://doi.org/10.11906/TST.177-186.2016.12.17.

    Article  Google Scholar 

  4. M. Thumm, J. Infrared Millim. Terahertz Waves, 2020. https://doi.org/10.1007/s10762-019-00631-y.

    Article  Google Scholar 

  5. S. H. Kao, C. C. Chiu, K. F. Pao, K. R. Chu, Phys. Rev. Lett., 2011. https://doi.org/10.1103/PhysRevLett.107.135101.

    Article  Google Scholar 

  6. T. Saito, Y. Tatematsu, Y. Yamaguchi, S. Ikeuchi, S. Ogasawara, N. Yamada, R. Ikeda, I. Ogawa, T. Idehara, Phys. Rev. Lett., 2012. https://doi.org/10.1103/PhysRevLett.109.155001.

    Article  Google Scholar 

  7. N. S. Ginzburg, M. Y. Glyavin, A. M. Malkin, V. N. Manuilov, R. M. Rozental, A. S. Sedov, A. S. Sergeev, V. Y. Zaslavsky, I. V. Zotova, T. Idehara, IEEE Trans. Plasma Sci., 2016. https://doi.org/10.1109/TPS.2016.2585307.

    Article  Google Scholar 

  8. Q. Zhao, S. Yu, T. Zhang, IEEE Trans. Electron Devices, 2017. https://doi.org/10.1109/TED.2017.2756635.

    Article  Google Scholar 

  9. V. I. Shcherbinin, V. I. Tkachenko, K. A. Avramidis, J. Jelonnek, IEEE Trans. Electron Devices, 2019. https://doi.org/10.1109/TED.2019.2944647.

    Article  Google Scholar 

  10. T. I. Tkachova, V. I. Shcherbinin, V. I. Tkachenko, J. Infrared Millim. Terahertz Waves, 2019. https://doi.org/10.1007/s10762-019-00623-y.

    Article  Google Scholar 

  11. V. I. Shcherbinin, Y. K. Moskvitina, K. A. Avramidis, J. Jelonnek, IEEE Trans. Electron Devices, 2020. https://doi.org/10.1109/TED.2020.2996179.

    Article  Google Scholar 

  12. I. V. Bandurkin, A. P. Fokin, M. Y. Glyavin, A. G. Luchinin, I. V. Osharin, A. V. Savilov, IEEE Electron Device Lett., 2020. https://doi.org/10.1109/LED.2020.3010445.

    Article  Google Scholar 

  13. V. I. Shcherbinin, K. A. Avramidis, M. Thumm, J. Jelonnek, J. Infrared Millim. Terahertz Waves, 2021. https://doi.org/10.1007/s10762-020-00760-9.

    Article  Google Scholar 

  14. T. I. Tkachova, V. I. Shcherbinin, V. I. Tkachenko, Z. C. Ioannidis, M. Thumm, J. Jelonnek, J. Infrared Millim. Terahertz Waves, 2021. https://doi.org/10.1007/s10762-021-00772-z.

    Article  Google Scholar 

  15. V. I. Shcherbinin, IEEE Trans. Electron Devices, 2021. https://doi.org/10.1109/TED.2021.3090348.

    Article  Google Scholar 

  16. A. C. Torrezan, S. T. Han, I. Mastovsky, M. A. Shapiro, J. R. Sirigiri, R. J. Temkin, A. B. Barnes, R. G. Griffin, IEEE Trans. Plasma Sci., 2010. https://doi.org/10.1109/TPS.2010.2046617.

    Article  Google Scholar 

  17. S. K. Jawla, R. G. Griffin, I. A. Mastovsky, M. A. Shapiro, R. J. Temkin, IEEE Trans. Electron Devices, 2020. https://doi.org/10.1109/TED.2019.2953658.

    Article  Google Scholar 

  18. La Agusu, T. Idehara, H. Mori, T. Saito, I. Ogawa, S. Mitsudo, Int. J Infrared Millim. Waves, 2007. https://doi.org/10.1007/s10762-007-9215-y.

    Article  Google Scholar 

  19. V. I. Shcherbinin, T. I. Tkachova, V. I. Tkachenko, IEEE Trans. Electron Devices, 2018. https://doi.org/10.1109/TED.2017.2769219.

    Article  Google Scholar 

  20. Y. J. Huang, L. H. Yeh, K. R. Chu, Phys. Plasmas, 2014. https://doi.org/10.1063/1.4900415.

    Article  Google Scholar 

  21. G. G. Denisov, M. V. Morozkin, A. P. Fokin, A. V. Chirkov, A. N. Kuftin, S. Yu. Kornishin, E. M. Tai, A. S. Sedov, M. D. Proyavin, A. I. Tsvetkov, M. Yu. Glyavin, Proc. IRMMW-THz, 2019. https://doi.org/10.1109/IRMMW-THz.2019.8874359.

    Article  Google Scholar 

  22. M. Yu. Glyavin, A. V. Chirkov, G. G. Denisov, A. P. Fokin, V. V. Kholoptsev, A. N. Kuftin, A. G. Luchinin, G. Yu. Golubyatnikov, V. I. Malygin, M. V. Morozkin, V. N. Manuilov, M. D. Proyavin, A. S. Sedov, E. V. Sokolov, E. M. Tai, A. I. Tsvetkov, V. E. Zapevalov, Rev. Sci. Instrum., 2015. https://doi.org/10.1063/1.4921322.

    Article  Google Scholar 

  23. V. I. Shcherbinin, A. V. Hlushchenko, A. V. Maksimenko, V. I. Tkachenko, IEEE Trans. Electron Devices, 2017. https://doi.org/10.1109/TED.2017.2730252.

    Article  Google Scholar 

  24. M. Thumm, Int. J. Infrared Millim. Waves, 1998. https://doi.org/10.1023/A:1022514528711.

    Article  Google Scholar 

  25. R. Heidinger, G. Dammertz, A. Meier, M. K. Thumm, IEEE Trans. Plasma Sci., 2002. https://doi.org/10.1109/TPS.2002.1158309.

    Article  Google Scholar 

  26. V. V. Parshin, V. N. Derkach, B. M. Garin, R. Heidinger, J. Molla, V. G. Ralchenko, S.I. Tarapov, I. Danilov, S. E. Myasnikova, V. I. Polyakov, A. I. Rukovishnikov, Proc. IRMMW-THz, 2005. https://doi.org/10.1109/ICIMW.2005.1572387.

    Article  Google Scholar 

  27. V. V. Parshin, M. Y. Tretyakov, M. A. Koshelev, E. A. Serov, IEEE Sens. J., 2013. https://doi.org/10.1109/JSEN.2012.2215315.

    Article  Google Scholar 

  28. A. W. Fliflet, M. E. Read, Int. J. Electron., 1981. https://doi.org/10.1080/00207218108901350.

    Article  Google Scholar 

  29. J. M. Neilson, P. E. Latham, M. Caplan, W. G. Lawson, IEEE Trans. Microw. Theory Technol., 1989. https://doi.org/10.1109/22.31074.

    Article  Google Scholar 

  30. M. Botton, T. M. Antonsen, B. Levush, K. T. Nguyen, A. N. Vlasov, IEEE Trans. Plasma Sci., 1998. https://doi.org/10.1109/27.700860.

    Article  Google Scholar 

  31. A. V. Maksimenko, V. I. Shcherbinin, A. V. Hlushchenko, V. I. Tkachenko, K. A. Avramidis, J. Jelonnek, IEEE Trans. Electron Devices, 2019. https://doi.org/10.1109/TED.2019.2893888.

    Article  Google Scholar 

  32. A. V. Maksimenko, V. I. Shcherbinin, V. I. Tkachenko, J. Infrared Millim. Terahertz Waves, 2019. https://doi.org/10.1007/s10762-019-00589-x.

    Article  Google Scholar 

  33. S. Y. Park, J. L. Hirshfield, Phys. Rev. E, 2000. https://doi.org/10.1103/PhysRevE.62.1266.

    Article  Google Scholar 

  34. V. I. Shcherbinin, G. I. Zaginaylov, V. I. Tkachenko, "Cavity with distributed dielectric coating for subterahertz second-harmonic gyrotron," Problems Atomic Sci. Technol., vol. 6, no 106, p. 255, 2016.

    Google Scholar 

  35. V. I. Shcherbinin, V. I. Tkachenko, J. Infrared Millim. Terahertz Waves, 2017. https://doi.org/10.1007/s10762-017-0386-x.

    Article  Google Scholar 

  36. J. G. Dil, H. Blok, Opto-Electron., 1973. https://doi.org/10.1007/BF01418077.

    Article  Google Scholar 

  37. C. Yeh, F. I. Shimabukuro, The Essence of Dielectric Waveguides, (Springer US, New York, 2008), pp. 136–167.

    Book  Google Scholar 

  38. V. I. Shcherbinin, G. I. Zaginaylov, V. I. Tkachenko, Prog. Electromagn. Res. M, 2017. https://doi.org/10.2528/PIERM16110902.

    Article  Google Scholar 

  39. J. Krupka, M. E. Tobar, J. G. Hartnett, D. Cros, J. M. L. Floch, IEEE Trans. Microw. Theory Technol., 2005. https://doi.org/10.1109/TMTT.2004.840572.

    Article  Google Scholar 

  40. E. Snitzer, J. Opt. Soc. Am., 1961. https://doi.org/10.1364/JOSA.51.000491.

    Article  MathSciNet  Google Scholar 

  41. D. B. McDermott, D. S. Furuno, N. C. Luhmann, Int. J Infrared Millim. Waves, 1983. https://doi.org/10.1007/BF01009701.

    Article  Google Scholar 

  42. V. L. Bratman, M. A Moiseev, M. I. Petelin, R. É. Érm, Radiophys. Quantum Electron., 1973. https://doi.org/10.1007/BF01030898.

    Article  Google Scholar 

  43. V. A. Flyagin, A. V. Gaponov, M. I. Petelin, V. K. Yulpatov, IEEE Trans. Microwave Theory Technol., 1977. https://doi.org/10.1109/TMTT.1977.1129149.

    Article  Google Scholar 

  44. Wagner, G. Gantenbein, W. Kasparek, M. Thumm, Int. J. Infrared Millim. Waves, 1995. https://doi.org/10.1007/BF02274811.

    Article  Google Scholar 

  45. S. N. Vlasov, G. M. Zhislin, I. M. Orlova, M. I. Petelin, G. G. Rogacheva, Radiophys. Quantum Electron., 1969. https://doi.org/10.1007/BF01031202.

    Article  Google Scholar 

  46. R. S. Balmer, J. R. Brandon, S. L. Clewes, H. K. Dhillon, J. M. Dodson, I. Friel, P. N. Inglis, T. D. Madgwick, M. L. Markham, T. P. Mollart, N. Perkins, G. A. Scarsbrook, D. J. Twitchen, A. J. Whitehead, J. J. Wilman, S. M. Woollard, J. Phys.-Condensed Matter, 2009. https://doi.org/10.1088/0953-8984/21/36/364221.

  47. N. Yang, S. Yu, J. V. Macpherson, Y. Einaga, H. Zhao, G. Zhao, G. W. Swain, X. Jiang, Chem. Soc. Rev., 2019. https://doi.org/10.1039/C7CS00757D.

    Article  Google Scholar 

  48. J. P. Calame, A. M. Cook, IEEE Trans. Plasma Sci., 2017. https://doi.org/10.1109/TPS.2017.2748043.

    Article  Google Scholar 

  49. G. Aiello, S. Schreck, K. A. Avramidis, T. Franke, G. Gantenbein, J. Jelonnek, A. Meier, T. Scherer, D. Strauss, M. Thumm, M.Q. Tran, C. Wild, E. Woerner, Fusion Eng. Des., 2020. https://doi.org/10.1016/j.fusengdes.2020.111818.

    Article  Google Scholar 

Download references

Acknowledgements

The work of Vitalii I. Shcherbinin was supported by the Georg Forster Research Fellowship for Experienced Researchers from the Alexander von Humboldt Foundation.

Funding

Partial financial support was received from the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by VIS. The first draft of the manuscript was written by VIS, and all authors commented on previous versions of the manuscript. The authors read and approved the final manuscript.

Corresponding author

Correspondence to Vitalii I. Shcherbinin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shcherbinin, V.I., Avramidis, K.A., Pagonakis, I.G. et al. Large Power Increase Enabled by High-Q Diamond-Loaded Cavities for Terahertz Gyrotrons. J Infrared Milli Terahz Waves 42, 863–877 (2021). https://doi.org/10.1007/s10762-021-00814-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-021-00814-6

Keywords

Navigation