Skip to main content
Log in

A Broadband Gap Waveguide-Based Magic-T Junction for Millimeter-Wave Applications

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

A broadband magic-T junction for millimeter-wave applications is proposed in this article. Gap waveguide technology is employed to overcome fabrication and assembly challenges at millimeter-wave frequencies. The measured results for a fabricated prototype are in good agreement with the simulations. The measurements indicate that the fabricated structure exhibits 28% impedance bandwidth and isolation better than 69 dB between E- and H-arms in the Ka-band. In addition, the measured coupling level between the collinear arms is less than −18.6 dB. The proposed structure is compact and simple, has high power and low loss, and is suitable for low-cost fabrication to utilize in a wide variety of millimeter-wave and microwave applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. M. Pozar, Microwave Engineering, 4th ed., New York: Wiley, 2012.

    Google Scholar 

  2. M. I. Skolnik, Introduction to Radar Systems, 3rd ed., New York: McGraw-Hill, 2001.

    Google Scholar 

  3. K. S. Ang, Y. C. Leong, and C. H. Lee, A wide-band monopulse comparator with complete nulling in all delta channels throughout sum channel bandwidth, IEEE Trans. Microw. Theory Techn., vol. 51, no. 2, pp. 371–373, Feb. 2003.

    Article  Google Scholar 

  4. K. U-Yen, E. J. Wollack, J. Papapolymerou, and J. Laskar, A broadband planar magic-T using microstrip–slot line transitions, IEEE Trans. Microw. Theory Techn., vol. 56, no. 1, pp. 172–177, Jan. 2008.

    Article  Google Scholar 

  5. T. M. Shen, T. Y. Huang, C. F. Chen, and R. B. Wu, A laminated waveguide magic-T with bandpass filter response in multilayer LTCC, IEEE Trans. Microw. Theory Techn., vol. 59, no. 3, pp. 584–592, Mar. 2011.

    Article  Google Scholar 

  6. W. Feng, W. Che, and K. Deng, Compact planar magic-T using E-plane substrate integrated waveguide (SIW) power divider and slotline transition, IEEE Microw. Wireless Compon. Lett., vol. 20, no. 6, pp. 331–333, Jun. 2010.

    Article  Google Scholar 

  7. W. Peng, Q. Xiao, and X. Chen, K-band planar magic-T using LTCC technology, IEEE Microw. Wireless Compon. Lett., vol. 27, no. 8, pp. 715–717, Aug. 2017.

    Article  Google Scholar 

  8. W. A. Tyrrell, Hybrid circuits for microwaves, Proc. IRE, vol. 35, no. 11, pp. 1294-1306, Nov. 1947.

    Article  Google Scholar 

  9. Y.-J. He, D.-Y. Mo, Q.-S. Wu, and Q.-X. Chu, A Ka-band waveguide magic-T with coplanar arms using ridge-waveguide transition, IEEE Microw. Wireless Compon. Lett., vol. 27, no. 11, pp. 965–967, Nov. 2017.

    Article  Google Scholar 

  10. Q.-X. Chu, Q.-S. Wu, and D.-Y. Mo, A Ka-band E-plane waveguide magic-T with coplanar arms, IEEE Trans. Microw. Theory Techn., vol. 62, no. 11, pp. 2673–2679, Oct. 2014.

    Article  Google Scholar 

  11. V. S. Kumar and D. G. Kurup, A New Broadband Magic-Tee Design for Ka-Band Satellite Communications, IEEE Microw. Wireless Compon. Lett., vol. 29, no. 2, pp. 92-94, Feb. 2019.

    Article  Google Scholar 

  12. R. V. Gatti, R. Rossi, M. Dionigi, A. Spigarelli, An X-band compact and low-profile waveguide magic-T, Int. J. RF Microw. Comp.-Aid. Eng., vol. 29, no.9, 2019.

  13. J. Wu, C. Wang and Y. Guo, Ridged Waveguide Magic Tees Based on 3-D Printing Technology, IEEE Trans. Microw. Theory Techn., vol. 68, no. 10, pp. 4267-4275, Oct. 2020.

    Article  Google Scholar 

  14. Z. Shen, C. L. Law and C. Qian, Hybrid finite-element-modal-expansion method for matched magic T-junction, IEEE Trans. Magn., vol. 38, no. 2, pp. 385-388, March 2002.

    Article  Google Scholar 

  15. K. C. Hwang, Design and Optimization of a Broadband Waveguide Magic-T Using a Stepped Conducting Cone, IEEE Microw. Wireless Compon. Lett., vol. 19, no. 9, pp. 539-541, Sep. 2009.

    Article  Google Scholar 

  16. L. Zhao, J. Xu, L. Wang, and M. Wang, A Novel Ka-Band Solid-State Power Combining Amplifier, Prog. Electromag. Res. C, vol. 23, pp. 161-173, 2011.

    Article  Google Scholar 

  17. C. A. Leal-Sevillano, J. A. Ruiz-Cruz, J. R. Montejo-Garai and J. M. Rebollar, Compact broadband couplers based on the waveguide magic-T junction, 2013 European Microwave Conference, Nuremberg, Germany, 2013, pp. 151-154.

    Google Scholar 

  18. A. U. Zaman and P.-S. Kildal, GAP Waveguides, Handbook of Antenna Technologies, Springer, 2016.

    Book  Google Scholar 

  19. D. Zarifi, A. Farahbakhsh and A. U. Zaman, A Gap Waveguide-Fed Wideband Patch Antenna Array for 60-GHz Applications, IEEE Trans. Antennas Propag., vol. 65, no. 9, pp. 4875-4879, Sep. 2017.

    Article  Google Scholar 

  20. M. Ferrando-Rocher, J. I. Herranz-Herruzo, A. Valero-Nogueira, and A. Vila-Jim´enez, Single-Layer Circularly-Polarized Ka-Band Antenna using Gap Waveguide technology, IEEE Trans. Antennas Propag., vol. 66, no. 8, pp. 3837-3845, May 2018.

    Article  Google Scholar 

  21. A. Vosoogh, A. Haddadi, A. U. Zaman, J. Yang, H. Zirath, and A. A. Kishk, W-band low-profile monopulse slot array antenna based on gap waveguide corporate-feed network, IEEE Trans. Antennas Propag., vol. 66, no. 12, pp. 6997-7009, Dec. 2018.

    Article  Google Scholar 

  22. J. Cao, H. Wang, S. Tao, S. Mou, Y. Guo, Highly Integrated Beam Scanning Groove Gap Waveguide Leaky Wave Antenna Array , IEEE Trans. Antennas Propag., Early Access, May 2020.

  23. S. Ghorbani , S. A. Razavi, M. Ostovarzadeh, A. Farahbakhsh, Development of a center fed slot array antenna with very low side lobes using ridge gap waveguide (RGW) technology, AEU-International Journal of Electronics and Communications, vol. 125, no. 1, pp. 153385, 2020.

    Article  Google Scholar 

  24. D. Sun and J. Xu, A Novel Iris Waveguide Bandpass Filter Using Air Gapped Waveguide Technology, IEEE Microw. Wireless Compon. Lett., vol. 26, no. 7, pp. 475-477, July 2016.

    Article  Google Scholar 

  25. Z. Liu, J.-Y. Deng, and D. Sun, Slow-wave groove gap waveguide bandpass filter, IEEE Access, vol. 7, pp. 52581-52588, 2019.

    Article  Google Scholar 

  26. M. Rezaee and A. U. Zaman, Groove Gap Waveguide Filter Based on Horizontally Polarized Resonators for V-Band Applications, IEEE Trans. Microw. Theory Techn., vol. 68, no. 7, pp. 2601-2609, 2020.

    Article  Google Scholar 

  27. J. L. Vazquez-Roy, E. Rajo-Iglesias, G. Ulisse, Design and Realization of a Band Pass Filter at D-band Using Gap Waveguide Technology, J. Infrared Milli. Terahz Waves, vol. 41, pp. 1469–1477, 2020.

    Article  Google Scholar 

  28. S. I. Shams and A. Kishk, Design of 3-dB Hybrid Coupler Based on RGW Technology, IEEE Trans. Microw. Theory Tech., vol. 65, no. 10, pp. 3849-3855, 2017.

    Article  Google Scholar 

  29. D. Zarifi, A. Farahbakhsh, and A. U. Zaman, Design and fabrication of wideband millimeter-wave directional couplers with different coupling factors based on gap waveguide technology, IEEE Access, vol. 7, pp. 88822-88829, 2019.

    Article  Google Scholar 

  30. A. Farahbakhsh, Ka-Band Coplanar Magic-T Based on Gap Waveguide Technology, IEEE Microw. Wireless Compon. Lett., vol. 30, no. 9, pp. 853-856, 2020.

    Article  Google Scholar 

  31. H. Abdollahy, A. Farahbakhsh, M. Ostovarzadeh, Mechanical reconfigurable phase shifter based on gap waveguide technology AEU-International Journal of Electronics and Communications, vol. 132, 2021.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davoud Zarifi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasri, M., Zarifi, D. A Broadband Gap Waveguide-Based Magic-T Junction for Millimeter-Wave Applications. J Infrared Milli Terahz Waves 42, 793–801 (2021). https://doi.org/10.1007/s10762-021-00808-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-021-00808-4

Keywords

Navigation