Skip to main content
Log in

Terahertz Generation by Optical Rectification in Sugar Crystal

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

We report on THz pulse generation through optical rectification of femtosecond laser pulses in sugar crystals. The sugar crystals were grown from an aqueous solution of caster cane sugar bought in a local grocery. Sugar exhibits rather good nonlinear coefficients (\(d_{23}\simeq 56\) pm/V), but the optical-THz conversion efficiency remains quite weak because of the lack of phase-matching, when pumped by a laser beam of 0.8-μm central wavelength. Nevertheless, sugar availability at a low price makes it a relevant material for trial experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X.-C. Zhang, X. F. Ma, Y. Jin, T.-M. Lu, E. P. Boden, P. D. Phelps, K. R. Stewart, and C. P. Yakymyshyn, Terahertz optical rectification from a nonlinear organic crystal, Appl. Phys. Lett., 61, 3080–3082 (1992).

  2. X. Zheng, C. V. McLaughlin, P. Cunningham, and L. M. Hayden, Organic broadband terahertz sources and sensors, J. Nanoelectronics and Optoelectronics, 2, 1–19, (2007).

  3. Z. Yang, L. Mutter, M. Stillhart, B. Ruiz, S. Aravazhi, M. Jazbinsek, and P. Guenter, Large Size Bulk and Thin Film Stilbazolium Salt Single Crystals for Nonlinear Optics and THz Generation, Adv. Funct. Mater., 17, 2018–2023 (2007).

  4. J. J. Carey, R. T. Bailey, D. Pugh, J. N. Sherwood, F. R. Cruickshank, and K. Wynne, Terahertz pulse generation in an organic crystal by optical rectification and resonant excitation of molecular charge transfer, Appl. Phys. Lett., 81, 4335–4337 (2002).

  5. S. C. Lee, B. J. Kang, M. J. Koo, S. H. Lee, J. H. Han, J. Y. Choi, and F. Rotermund, New Electro Optic Salt Crystals for Efficient Terahertz Wave Generation by Direct Pumping at Ti: Sapphire Wavelength, Adv. Opt. Mater., 5, 1600758 (2017).

  6. M. Jazbinsek, U. Puc, A. Abina, and A. Zidansek, Organic Crystals for THz Photonics, Appl. Sci., 9, 882 (2019).

  7. Q. Wu and X.C. Zhang, Ultrafast electro-optic field sensors, Appl. Phys. Lett., 6, 1604–1606 (1996).

  8. F. Sanjuan, G. Gaborit, and J.-L. Coutaz, Sub-wavelength terahertz imaging through optical rectification, Sci. Rep., 8, 3080–3082 (2018).

  9. P. M. Rentzepis and Y. H. Pao, Laser-induced optical second harmonic generation in organic crystals, Appl. Phys. Lett., 5, 13492 (1964).

  10. J.-F. Nicoud and R. J. Twieg, Design and synthesis of organic molecular compounds for efficient second-harmonic generation, Nonlinear optical properties of organic molecules and crystals, 1, 227–296 (2012).

  11. R. W. McQuaid, The Pockels effect of hexamethylenete-tramine, Appl. Opt., 2, 320–321 (1963).

  12. K. D. Singer, S. L. Lalama, J. E. Sohn, and R. D. Small, Electro-optic organic materials, in Nonlinear Optical Properties of Organic Molecules and Crystals, 1, 437–468 (2012).

  13. D. S. Chemla and J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals 2, Elsevier (2012).

  14. S. K. Kurtz and T. T. Perry, Powder second harmonic generation efficiencies of saccharide materials: Chemistry of materials, IEEE J. Quantum Electron., 8, 3798–3813 (1968).

  15. M. Rosker and C. Tang, Evaluation of second-harmonic generation of various sugars in the powder form, IEEE J. Quantum Electron., 20, 334–336 (1984).

  16. J. M. Halbout and C. Tang, Phase-matched second-harmonic generation in sucrose, IEEE J. Quantum Electron., 18, 410–415 (1982).

  17. G. Bourhill, K. J. Mansour, L. Khundkar, E. T. Sleva, R. Kern, and S. K. Kurtz, Powder second harmonic generation efficiencies of saccharide materials. Chemistry of materials, IEEE J. Quantum Electron., 5, 802–808 (1993).

  18. S. Pérez, The structure of sucrose in the crystal and in solution, in Sucrose, Springer, 11–32 (1995).

  19. G. T. Keenan, The optical properties of some sugars, Journal of the Washington Academy of Sciences, 16, 433–440 (1926).

  20. M. Walther, B. M. Fischer and P. U. Jepsen, Noncovalent intermolecular forces in polycrystalline and amorphous saccharides in the far infrared, Chem. Phys., 288, 261–268 (2003).

  21. J. Kroll, J. Darmo and K. Unterrainer, Terahertz optical activity of sucrose single-crystals, Vibrational Spectroscopy, 3, 324–329 (2007).

  22. E. A. Wood, Crystals: a handbook for school teachers. Written for the Commission on Crystallographic Teaching of the International Union of Crystallography, Polycrystal Book Service (1972).

  23. R. E. Newnham, Properties of materials: anisotropy, symmetry, structure, Oxford University Press on Demand (2005).

  24. G. Gaborit, F. Sanjuan and J.-L. Coutaz, Second order nonlinear optical processes in [111] cubic crystals for terahertz optoelectronics, Lithuanian J. of Phys., 58, 24–37 (2018).

  25. J.-L. Coutaz, F. Garet, and V. P. Wallace, Principles of Terahertz time-domain spectroscopy, Stanford Pan Pub. (2018).

  26. Recent advances in monoclinic crystal optics, Y. Petit, S. Joly, P. Ségonds, and B. Boulanger, Laser & Photonics Reviews, 7, 920–937 (2013).

  27. A. Yariv, Optical electronics, Saunders College Publ. (1991).

  28. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of nonlinear optical crystals, 64, Springer (2013).

  29. P. Tzankov and V. Petrov, Effective second-order nonlinearity in acentric optical crystals with low symmetry, Appl. Opt., 44, 6971–6985 (2005).

  30. N. Faria, M. N. Pons, S. Feyo de Azevedo, F. A. Rocha and H. Vivier, Quantification of the morphology of sucrose crystals by image analysis, Powder Technology, 133, 54–67 (2003).

  31. R. Kumaresan and S. Moorthy Babu, Crystal growth and characterization of sucrose single crystals, Materials Chemistry and Physics, 49, 83–86 (1997).

  32. A. Schneider, Theory of terahertz pulse generation through optical rectification in a nonlinear optical material with a finite size, Phys. Rev. A, 82, 033825 (2010).

  33. G. Gallot, J. Zhang, R.W. McGowan, T. I. Jeon, and D. Grischkowsky, Measurements of the THz absorption and dispersion of ZnTe and their relevance to the electro-optic detection of THz radiation, Applied Physics Letters, 3450–3452 (1999).

  34. A. Danylov, THz laboratory measurements of atmospheric absorption between 6% and 52% relative humidity, Submillimeter-Wave Technology Laboratory, University of Massachusetts Lowell, 175 (2006).

  35. A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R. U. A. Khan, and P. Günter , Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment, J. Opt. Soc. Amer. B, 23, 1822 (2006).

  36. I. Wilke and S. Sengupta, Nonlinear optical techniques for terahertz pulse generation and detection optical rectification and electrooptic sampling, in Terahertz spectroscopy: Principles and applications, Chemical Rubber Company, 41–72 (2007).

  37. F. Sanjuan, G. Gaborit and J.-L. Coutaz, Full electro-optic terahertz time-domain spectrometer for polarimetric studies, Appl. Opt., 7, 6055–6060 (2018).

Download references

Acknowledgements

The authors thanks E. Herault, M. Bernier, and F. Al Jammal of IMEP-LAHC for their help during this work. They are deeply indebted to the reviewer who permits them to correct some error in the first version of their manuscript.

Funding

This work was supported by the French Research Agency (ANR), under the program LabEx FOCUS ANR-11-LABX-0013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Sanjuan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanjuan, F., Gaborit, G. & Coutaz, JL. Terahertz Generation by Optical Rectification in Sugar Crystal. J Infrared Milli Terahz Waves 42, 525–536 (2021). https://doi.org/10.1007/s10762-021-00795-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-021-00795-6

Keywords

Navigation