Skip to main content

Advertisement

Log in

A Model of Terahertz Parametric Process Including Spontaneous Parametric Down-conversion

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

A new numerical model of terahertz parametric process is demonstrated, which takes the spontaneous parametric down-conversion into consideration by adding tens of frequency components in the coupled-wave equations. To set the values of some parameters in this model, the residual pump energy and idler spectra during spontaneous parametric down-conversion are measured experimentally for different pump energy and crystal lengths. Compared with previous models which only involve three waves, the new model is more accurate, especially when the seed power is low or the generated terahertz-wave is in the low frequency region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. I. Hayashi, H. Sakai, T. Taira, H. Minamide, K. Kawase, High-power, single-longitudinal-mode terahertz-wave generation pumped by a microchip Nd:Yag laser, Opt. Express, 20, 2881-2886 (2012).

  2. H. Minamide, S. I. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, Kilowatt-peak terahertz-w generation and sub-femtojoule terahertz-wave pulse detection based on nonlinear optical wavelength-conversion at room temperature, J. Infrared Millim. Terahertz Waves, 35, 25-37 (2014).

  3. T. J. Edwards, D. Walsh, M. B. Spurr, C. F. Rae, M. H. Dunn, P. G. Browne, Compact source of continuously and widely-tunable terahertz radiation, Opt. Express, 14, 1582-1589 (2006).

  4. C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, J. Yao, Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator, Appl. Phys. Lett., 108, 011107 (2016).

  5. L. Tang, D. Xu, Y. Wang, C. Yan, Y. He, J. Li, K. Zhong, J. Yao, Injection pulse-seeded terahertz-wave parametric generator with gain enhancement in wide frequency range, Opt. Express, 27, 22808–22818 (2019).

  6. G. Tang, Z. Cong, Z. Qin, X. Zhang, W. Wang, D. Wu, N. Li, Q. Fu, Q. Lu, S. Zhang, Energy scaling of terahertz-wave parametric sources, Opt. Express, 23, 4144–4152 (2015).

  7. H. Sakai, K. Kawase, K. Murate, Highly sensitive multi-stage terahertz parametric detector, Opt. Lett., 45, 3905–3908 (2020).

  8. M. Kato, S. R. Tripathi, K. Murate, K. Imayama, K. Kawase, Non-destructive drug inspection in covering materials using a terahertz spectral imaging system with injection-seeded terahertz parametric generation and detection, Opt. Express, 24, 6425–6432 (2016).

  9. S. R. Tripathi, Y. Sugiyama, K. Murate, K. Imayama, K. Kawase, Terahertz wave three-dimensional computed tomography based on injection-seeded terahertz wave parametric emitter and detector, Opt. Express, 24, 6433–6440 (2016).

  10. W. Kong, Z. Li, G. Li, Q. Yan, M. Zou, X. Zhou, Y. Qin, Terahertz confocal microscopy with an injection-seeded terahertz parametric generator, Opt. Eng., 58(6), 060503 (2019).

  11. R. Mitsuhashi, K. Murate, S. Niijima, T. Horiuchi, K. Kawase, Terahertz tag identifiable through shielding materials using machine learning, Opt. Express, 28, 3517–3527 (2020).

  12. S. S. Sussman, Tunable light scattering from transverse optical modes in lithium niobate, M. L. Report No. 1851, Stanford University, CA Microwave Laboratory, (1970).

  13. D. J. Spence, H. M. Pask, A. J. Lee, Analytic theory for lasers based on stimulated polariton scattering, J. Opt. Soc. Am. B, 36, 1706-1715 (2019).

  14. C. Jia, X. Zhang, Z. Cong, Z. Liu, X. Chen, Z. Qin, J. Zang, F. Gao, P. Wang, Y. Jiao, J. Xu, W. Wang, S. Zhang, Theoretical and experimental study on a large energy potassium titanyl phosphate terahertz parametric source, Opt. Laser. Technol. 121, 105817 (2020).

  15. Y. Qin, Z. Li, Q. Yan, X. Zhou, M. Zou, W. Kong, Numerical Modeling of an Injection-Seeded Terahertz-Wave Parametric Generator, J. Infrared Millim. Terahertz Waves 41, 276 (2020).

  16. W. Kong, Z. Li, Q. Yan, M. Zou, X. Zhou, Y. Qin, Theoretical and experimental study on the enhancement of seed injection in terahertz-wave generation, J. Opt. Soc. Am. B 37, 2479 (2020).

  17. B. Haase, M. Kutas, F. Riexinger, P. Bickert, A. Keil, D. Molter, M. Bortz, G. Von Freymann, Spontaneous parametric down-conversion of photons at 660 nm to the terahertz and sub-terahertz frequency range, Opt. Express, 27, 7458–7468 (2019).

  18. D. E. Zelmon, D. L. Small, D. Jundt, Infrared corrected sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide-doped lithium niobate, J. Opt. Soc. Am. B, 14, 3319–3322 (1997).

  19. X. Wu, C. Zhou, W. R. Huang, F. Ahr, F. X. Kärtner, Temperature dependent refractive index and absorption coefficient of congruent lithium niobate crystals in the terahertz range, Opt. Express, 23, 29729-29737 (2015).

  20. M. Unferdorben, Z. Szaller, I. Hajdara, J. Hebling, L. Pálfalvi, Measurement of refractive index and absorption coefficient of congruent and sStoichiometric lithium niobate in the terahertz range, J. Infrared Millim. Terahertz Waves, 36, 1203-1209 (2015).

  21. R. C. Miller, Optical second harmonic generation in piezoelectric crystals, Appl. Phys. Lett., 5, 17-19 (1964).

  22. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, R. Ito, Absolute scale of second-order nonlinear-optical coefficients, J. Opt. Soc. Am. B, 14, 2269-2294 (1997).

  23. K. Murate, S. Hayashi, K. Kawase, Expansion of the tuning range of injection-seeded terahertz-wave parametric generator up to 5 THz, Appl. Phys. Express, 9, 082401 (2016).

Download references

Funding

This work was partially supported by the National Natural Science Foundation of China (11804320) and Sichuan Science and Technology Program (2020YJ0205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weipeng Kong.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Y., Li, Z., Yan, Q. et al. A Model of Terahertz Parametric Process Including Spontaneous Parametric Down-conversion. J Infrared Milli Terahz Waves 42, 656–670 (2021). https://doi.org/10.1007/s10762-021-00778-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-021-00778-7

Keywords

Navigation