Sub-Terahertz Complex Permittivity Measurement Method Using Cavity Switches

Abstract

New method of measurement of dielectric constant and loss tangent for small samples of lossy dielectrics, including plain semiconductors, using non-oversized resonators being parts of the recently developed cavity switches for sub-terahertz bands is proposed. Strong influence of the tangent loss value to the Q-factor of the resonator is calculated and observed in experiments. A simple monosemantic algorithm to retrieve explicit mathematical expressions for the complex permittivity from the experimental data is demonstrated. The advantage of the new method over the known ones is much lower (up to million times) volume of the sample needed to analyze.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    M. Kulygin, G. Denisov, K. Vlasova, et al., J. Infrared Millimeter and Terahertz Waves, 36, 845 (2015).

    Article  Google Scholar 

  2. 2.

    M. Kulygin, G. Denisov, S. Shubin, et al., IEEE Trans. Terahertz Sci. and Technol., 7, 225 (2017).

    Article  Google Scholar 

  3. 3.

    M. Kulygin, G. Denisov, Yu. Rodin, Tech. Phys. Lett., 37, 368 (2011).

    Article  Google Scholar 

  4. 4.

    M. Kulygin, S. Shubin, S. Salaetdinov, et al., IEEE COMCAS (2015), https://doi.org/10.1109/COMCAS.2015.7360359

  5. 5.

    M. Kulygin, G. Denisov, K. Vlasova, et al., Review of Scientific Instruments, 87, 014704 (2016).

    Article  Google Scholar 

  6. 6.

    M. Kulygin, G. Denisov, VL. Kocharovsky, J. Infrared Millimeter and Terahertz Waves, 31, 31 (2010).

    Google Scholar 

  7. 7.

    M. Kulygin, G. Denisov, E. Novikov, et al., Radiophys. Quantum Electron., 61, 603 (2019).

    Article  Google Scholar 

  8. 8.

    M. Kulygin, IEEE Trans. Terahertz Sci. and Technol. 9, 186 (2019).

    Article  Google Scholar 

  9. 9.

    M. Kulygin, G. Denisov, N. Andreev, et al, Strong Microwaves in Plasmas (2014), https://doi.org/10.13140/RG.2.2.28559.43686

  10. 10.

    G. Denisov, VL. Kocharovsky, M. Kulygin, Bulletin Rus. Acad. Sci.: Phys., 73, 91 (2009).

    Google Scholar 

  11. 11.

    M. Kulygin, G. Denisov, V. Belousov, et al., Strong Microwaves in Plasmas (2011), https://doi.org/10.13140/RG.2.2.21115.16162

  12. 12.

    V. Denysenkov, T. Prisner, Electron. Mag. Res. (2019), https://doi.org/10.1002/9780470034590.emrstm1557

  13. 13.

    M. Kulygin, G. Denisov, S. Salahetdinov, et al., EPJ Web of Conferences, 149, 04030 (2017).

    Article  Google Scholar 

  14. 14.

    V. Belousov, A. Vikharev, G. Denisov, et al., Rus. Sem. Radiophys. (2013), https://doi.org/10.13140/RG.2.2.24365.13282

  15. 15.

    M. L. Kulygin, Ph. D. Dissertation, Nizhny Novgorod, Russia (2006), https://doi.org/10.13140/RG.2.2.23342.77125/1

  16. 16.

    M. Kulygin, G. Denisov, J Infrared Millim. and Terahertz Waves, 33, 638 (2012).

    Article  Google Scholar 

  17. 17.

    M. L. Kulygin, Radiophys. Quantum Electron., 47, 63 (2004).

    Article  Google Scholar 

  18. 18.

    M. Kulygin, V. Belousov, G. Denisov, Radiophys. Quantum Electron., 57, 509 (2014).

    Article  Google Scholar 

  19. 19.

    V. I. Belousov, A. A. Vikharev, et al, Preprint of IAP RAS No.810 (2013), https://doi.org/10.13140/RG.2.2.28396.67203

  20. 20.

    M. L. Kulygin, I. A. Litovsky, Int. Conf. IRMMW-THz (2019), https://doi.org/10.1109/IRMMW-THz.2019.8873901

  21. 21.

    Yu. A. Dryagin, V. V. Parshin, Int. J. Infrared Milli Waves, 13, 1023 (1992).

    Article  Google Scholar 

  22. 22.

    S. N. Vlasov, E. V. Koposova, A. B. Mazur, V. V. Parshin, Radiophys. Quantum Electron., 39, 410 (1996).

    Article  Google Scholar 

  23. 23.

    S. N. Vlasov, E. V. Koposova, S. E. Myasnikova, V. V. Parshin, Tech. Phys., 47, 1561 (2002).

    Article  Google Scholar 

  24. 24.

    V. Parshin, B. Garin, S. Myasnikova, A. Orlenekov, Radiophys. Quantum Electron., 47, 974 (2004).

    Article  Google Scholar 

  25. 25.

    V. V. Parshin, M. Yu. Tretyakov, M. A. Koshelev, E. A. Serov, Radiophys. Quantum Electron., 52, 525 (2009).

    Article  Google Scholar 

Download references

Funding

The study has been partially supported by the Russian Foundation for Basic Research, project No. 18-08-00672.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maxim L. Kulygin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kulygin, M.L., Litovsky, I.A. Sub-Terahertz Complex Permittivity Measurement Method Using Cavity Switches. J Infrared Milli Terahz Waves (2020). https://doi.org/10.1007/s10762-020-00742-x

Download citation

Keywords

  • Permittivity measurement
  • Method resonator
  • Cavity switch
  • Terahertz
  • Dielectric
  • Semiconductor
  • Loss tangent
  • Q-factor